Eurasian Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Mathematical Journal, 2021, Volume 12, Number 2, Pages 19–24
DOI: https://doi.org/10.32523/2077-9879-2021-12-2-19-24
(Mi emj400)
 

Generalized Cauchy product and related operators on $\ell^p(\beta)$

Y. Estaremi

Department of Mathematics and Computer Sciences, Golestan University, Gorgan, Iran
References:
Abstract: In this paper first we give some necessary and sufficient conditions for the boundedness of the multiplication operator $D_f=M_{*\!\!\!\bigcirc,f}$ with respect to the generalized Cauchy product  $*\!\!\!\!\!\bigcirc$, on $\ell^p(\beta)$. Also, under certain conditions, we give the characterization of the extended eigenvalues and extended eigenvectors of the multiplication operator $M_{*\!\!\!\bigcirc,z}$ on $\ell^p(\beta)$. Finally we describe the commutants of $M_{*\!\!\!\bigcirc,z}$ and consequently the collection of all hyperinvariant subspaces of $M_{*\!\!\!\bigcirc,z}$.
Keywords and phrases: Cauchy product, extended eigenvalue, multiplication operators.
Received: 13.01.2019
Bibliographic databases:
Document Type: Article
MSC: 47B37
Language: English
Citation: Y. Estaremi, “Generalized Cauchy product and related operators on $\ell^p(\beta)$”, Eurasian Math. J., 12:2 (2021), 19–24
Citation in format AMSBIB
\Bibitem{Est21}
\by Y.~Estaremi
\paper Generalized Cauchy product and related operators on $\ell^p(\beta)$
\jour Eurasian Math. J.
\yr 2021
\vol 12
\issue 2
\pages 19--24
\mathnet{http://mi.mathnet.ru/emj400}
\crossref{https://doi.org/10.32523/2077-9879-2021-12-2-19-24}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000710833400002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85111543700}
Linking options:
  • https://www.mathnet.ru/eng/emj400
  • https://www.mathnet.ru/eng/emj/v12/i2/p19
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Eurasian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024