Eurasian Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Mathematical Journal, 2021, Volume 12, Number 2, Pages 10–18
DOI: https://doi.org/10.32523/2077-9879-2021-12-2-10-18
(Mi emj399)
 

This article is cited in 1 scientific paper (total in 1 paper)

Modulus of continuity for Bessel type poteniial over Lorentz space

N. H. Alkhalil

S.M. Nikol’skii Mathematical Institute Peoples Friendship University of Russia 6 Miklukho Maklai St, 117198, Moscow, Russia Federation
Full-text PDF (405 kB) Citations (1)
References:
Abstract: The generalized Bessel potentials are constructed using convolutions of the generalized Bessel–McDonald kernels with functions belonging to a basic rearrangement invariant space. Under assumptions ensuring the embedding of potentials into the space of bounded continuous functions, differential properties of potentials are described by using the $k$-th order modulus of continuity in the uniform norm. In the paper, estimates are given for the $k$-th order modulus of continuity in the uniform norm in the case of the generalized Bessel potentials constructed over the basic weighted Lorentz space.
Keywords and phrases: the generalized Bessel potential, the modulus of continuity of a potential, Lorentz space, rearrangement invariant space.
Received: 07.06.2020
Bibliographic databases:
Document Type: Article
MSC: 46A30, 42A16
Language: English
Citation: N. H. Alkhalil, “Modulus of continuity for Bessel type poteniial over Lorentz space”, Eurasian Math. J., 12:2 (2021), 10–18
Citation in format AMSBIB
\Bibitem{Alk21}
\by N.~H.~Alkhalil
\paper Modulus of continuity for Bessel type poteniial over Lorentz space
\jour Eurasian Math. J.
\yr 2021
\vol 12
\issue 2
\pages 10--18
\mathnet{http://mi.mathnet.ru/emj399}
\crossref{https://doi.org/10.32523/2077-9879-2021-12-2-10-18}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000710833400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85111488124}
Linking options:
  • https://www.mathnet.ru/eng/emj399
  • https://www.mathnet.ru/eng/emj/v12/i2/p10
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Eurasian Mathematical Journal
    Statistics & downloads:
    Abstract page:143
    Full-text PDF :45
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024