Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2001, Volume 13, Issue 1, Pages 90–109
DOI: https://doi.org/10.4213/dm272
(Mi dm272)
 

This article is cited in 15 scientific papers (total in 15 papers)

Arcs in projective Hjelmslev planes

I. N. Landjev, T. Khonol'd
References:
Abstract: The (k,n)-arcs in projective Hjelmslev plane PHG(RR3) over a finite chain ring R are considered. We prove general upper bounds on the cardinality of such arcs and establish the maximum possible size of the projective (k,n)-arcs with n{q2,,q2+q1}. Constructions of projective arcs in the Hjelmslev planes over the chain rings with 4 and 9 elements are also given.
Received: 26.05.1999
Revised: 30.12.2000
English version:
Discrete Mathematics and Applications, 2001, Volume 11, Issue 1, Pages 53–70
DOI: https://doi.org/10.1515/dma.2001.11.1.53
Bibliographic databases:
UDC: 519.1
Language: Russian
Citation: I. N. Landjev, T. Khonol'd, “Arcs in projective Hjelmslev planes”, Diskr. Mat., 13:1 (2001), 90–109; Discrete Math. Appl., 11:1 (2001), 53–70
Citation in format AMSBIB
\Bibitem{LanKho01}
\by I.~N.~Landjev, T.~Khonol'd
\paper Arcs in projective Hjelmslev planes
\jour Diskr. Mat.
\yr 2001
\vol 13
\issue 1
\pages 90--109
\mathnet{http://mi.mathnet.ru/dm272}
\crossref{https://doi.org/10.4213/dm272}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1846041}
\zmath{https://zbmath.org/?q=an:1054.51005}
\transl
\jour Discrete Math. Appl.
\yr 2001
\vol 11
\issue 1
\pages 53--70
\crossref{https://doi.org/10.1515/dma.2001.11.1.53}
Linking options:
  • https://www.mathnet.ru/eng/dm272
  • https://doi.org/10.4213/dm272
  • https://www.mathnet.ru/eng/dm/v13/i1/p90
  • This publication is cited in the following 15 articles:
    1. Honold T., Kiermaier M., Landjev I., “New Upper Bounds on the Maximal Size of An Arc in a Projective Hjelmslev Plane”, Proceedings of the 2020 Seventeenth International Workshop on Algebraic and Combinatorial Coding Theory Algebraic and Combinatorial Coding Theory (Acct 2020): Proceedings of the Seventeenth International Workshop on Algebraic and Combinatorial Coding Theory Acct 2020, IEEE, 2020, 67–76  crossref  isi
    2. Rostami E., Nekooei R., “Computation of Minimum Hamming Weight For Linear Codes”, Iran. J. Math. Sci. Inform., 14:1 (2019), 81–93  mathscinet  isi
    3. Honold T., Landjev I., “Non-Free Extensions of the Simplex Codes Over a Chain Ring with Four Elements”, Des. Codes Cryptogr., 66:1-3, SI (2013), 27–38  crossref  mathscinet  zmath  isi  scopus
    4. Honold T., Kiermaier M., “The maximal size of 6- and 7-arcs in projective Hjelmslev planes over chain rings of order 9”, Science China-Mathematics, 55:1 (2012), 73–92  crossref  mathscinet  zmath  adsnasa  isi  scopus
    5. Honold T., Landjev I., “The Dual Construction for Arcs in Projective Hjelmslev Spaces”, Adv Math Commun, 5:1 (2011), 11–21  crossref  mathscinet  zmath  isi  scopus
    6. Landjev I., Rousseva A., “Characterization of Some Optimal Arcs”, Adv Math Commun, 5:2 (2011), 317–331  crossref  mathscinet  zmath  isi  scopus
    7. Boev S., Honold T., Landjev I., “Optimal Arcs in Hjelmslev Spaces of Higher Dimension”, C R Acad Bulgare Sci, 64:5 (2011), 625–632  mathscinet  zmath  isi
    8. Honold T., Kiermaier M., Landjev I., “New arcs of maximal size in projective hjelmslev planes of order nine”, Comptes-rendus de l'Académie Bulgare des Sciences, 63:2 (2010), 171–180  mathscinet  zmath  isi
    9. Kohnert A., “Sets of Type (d(1), d(2)) in Projective Hjelmslev Planes over Galois Rings”, Algorithmic Algebraic Combinatorics and Grobner Bases, 2009, 269–278  crossref  mathscinet  zmath  isi  scopus
    10. Honold T., Landjev I., “Linear Codes over Finite Chain Rings and Projective Hjelmslev Geometries”, Codes Over Rings, Series on Coding Theory and Cryptology, 6, 2009, 60–123  mathscinet  zmath  isi
    11. Landjev I., “On blocking sets in projective Hjelmslev planes”, Adv. Math. Commun., 1:1 (2007), 65–81  crossref  mathscinet  zmath  isi
    12. Ward H.N., “Arcs, minihypers, and the classification of three-dimensional Griesmer codes”, Advances in Coding Theory and Cryptography, Series on Coding Theory and Cryptology, 3, 2007, 33–50  crossref  mathscinet  zmath  isi  scopus
    13. Honold T., Landjev I., “On maximal arcs in projective Hjelmslev planes over chain rings of even characteristic”, Finite Fields Appl., 11:2 (2005), 292–304  crossref  mathscinet  zmath  isi  scopus
    14. Landjev I., Rousseva A., Maruta T., Hill R., “On optimal codes over the field with five elements”, Des. Codes Cryptogr., 29:1-3 (2003), 165–175  crossref  mathscinet  zmath  isi  scopus
    15. Shiromoto K., Storme L., “A Griesmer bound for linear codes over finite quasi-Frobenius rings”, International Workshop on Coding and Cryptography (WCC 2001) (Paris), Discrete Appl. Math., 128, no. 1, 2003, 263–274  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:570
    Full-text PDF :252
    References:93
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025