Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2001, Volume 13, Issue 1, Pages 78–89
DOI: https://doi.org/10.4213/dm279
(Mi dm279)
 

Strong $k$-colorings of graphs

I. É. Zverovich
References:
Abstract: We say that a $k$-colouring $C_1,\ldots,C_k$ of a graph $G$ is strong if for any vertex $u\in VG$ there exists an index $i\in\{1,\ldots,k\}$ such that $u$ is adjacent to any vertex of the class $C_i$. We consider the class $S(k)$ of strongly $k$-colourable graphs and demonstrate that the problem to recognise $S(k)$ is NP-complete for any $k\ge 4$, whereas it is polynomially solvable for $k=3$. We characterise the class $S(3)$ in terms of forbidden induced subgraphs and solve the problem of uniqueness of a strong 3-colouring.
Received: 13.04.1998
Bibliographic databases:
UDC: 519.1
Language: Russian
Citation: I. É. Zverovich, “Strong $k$-colorings of graphs”, Diskr. Mat., 13:1 (2001), 78–89; Discrete Math. Appl., 11:1 (2001), 83–94
Citation in format AMSBIB
\Bibitem{Zve01}
\by I.~\'E.~Zverovich
\paper Strong $k$-colorings of graphs
\jour Diskr. Mat.
\yr 2001
\vol 13
\issue 1
\pages 78--89
\mathnet{http://mi.mathnet.ru/dm279}
\crossref{https://doi.org/10.4213/dm279}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1846040}
\zmath{https://zbmath.org/?q=an:1053.05056}
\transl
\jour Discrete Math. Appl.
\yr 2001
\vol 11
\issue 1
\pages 83--94
Linking options:
  • https://www.mathnet.ru/eng/dm279
  • https://doi.org/10.4213/dm279
  • https://www.mathnet.ru/eng/dm/v13/i1/p78
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:440
    Full-text PDF :250
    References:57
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024