Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2020, Volume 494, Pages 43–47
DOI: https://doi.org/10.31857/S2686954320050379
(Mi danma115)
 

This article is cited in 4 scientific papers (total in 4 papers)

MATHEMATICS

Kirchhoff index for circulant graphs and its asymptotics

A. D. Mednykhab, I. A. Mednykhab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
b Novosibirsk State University, Novosibirsk, Russian Federation
Full-text PDF (160 kB) Citations (4)
References:
Abstract: The aim of this paper is to find an analytical formula for the Kirchhoff index of circulant graphs $C_n(s_1,s_2,\dots,s_k)$ and $C_{2n}(s_1,s_2,\dots,s_k,n)$ with even and odd valency, respectively. The asymptotic behavior of the Kirchhoff index as $n\to\infty$ is investigated. We proof that the Kirchhoff index of a circulant graph can be expressed as a sum of a cubic polynomial in $n$ and a quantity that vanishes exponentially as $n\to\infty$.
Keywords: circulant graph, Laplacian matrix, eigenvalue, Wiener index, Kirchhoff index.
Funding agency Grant number
Mathematical Center in Akademgorodok 075-15-2019-1613
This work was supported by Mathematical Center in Akademgorodok under agreement No. 075-15-2019-1613 with the Ministry of Science and Higher Education of the Russian Federation.
Presented: Yu. G. Reshetnyak
Received: 06.12.2019
Revised: 29.08.2020
Accepted: 31.08.2020
English version:
Doklady Mathematics, 2020, Volume 102, Issue 2, Pages 392–395
DOI: https://doi.org/10.1134/S106456242005035X
Bibliographic databases:
Document Type: Article
UDC: 517.545+517.962.2+519.173
Language: Russian
Citation: A. D. Mednykh, I. A. Mednykh, “Kirchhoff index for circulant graphs and its asymptotics”, Dokl. RAN. Math. Inf. Proc. Upr., 494 (2020), 43–47; Dokl. Math., 102:2 (2020), 392–395
Citation in format AMSBIB
\Bibitem{MedMed20}
\by A.~D.~Mednykh, I.~A.~Mednykh
\paper Kirchhoff index for circulant graphs and its asymptotics
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 494
\pages 43--47
\mathnet{http://mi.mathnet.ru/danma115}
\crossref{https://doi.org/10.31857/S2686954320050379}
\zmath{https://zbmath.org/?q=an:1477.05040}
\elib{https://elibrary.ru/item.asp?id=44344646}
\transl
\jour Dokl. Math.
\yr 2020
\vol 102
\issue 2
\pages 392--395
\crossref{https://doi.org/10.1134/S106456242005035X}
Linking options:
  • https://www.mathnet.ru/eng/danma115
  • https://www.mathnet.ru/eng/danma/v494/p43
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:130
    Full-text PDF :50
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024