Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2020, Volume 494, Pages 48–52
DOI: https://doi.org/10.31857/S2686954320050380
(Mi danma116)
 

This article is cited in 2 scientific papers (total in 2 papers)

MATHEMATICS

Representations of $\zeta(2n+1)$ and related numbers in the form of definite integrals and rapidly convergent series

K. M. Mirzoeva, T. A. Safonovab

a Lomonosov Moscow State University, Moscow, Russian Federation
b Northern (Arctic) Federal University named after M. V. Lomonosov, Arkhangelsk, Russian Federation
Full-text PDF (164 kB) Citations (2)
References:
Abstract: Let $\zeta(s)$ and $\beta(s)$ be the Riemann zeta function and the Dirichlet beta function. The formulas for calculating the values of $\zeta(2m)$ and $\beta(2m-1)$ ($m=1,2,\dots$) are classical and well known. Our aim is to represent $\zeta(2m+1)$, $\beta(2m)$, and related numbers in the form of definite integrals of elementary functions and rapidly converging numerical series containing $\zeta(2m)$. By applying the method of this work, on the one hand, both classical formulas and ones relatively recently obtained by others researchers are proved in a uniform manner, and on the other hand, numerous new results are derived.
Keywords: integral representation of series sums, values of the Riemann zeta function at odd points, values of the Dirichlet beta function at even points, Catalan's and Apéry's constants.
Funding agency Grant number
Russian Science Foundation 20–11–20261
This work was supported by the Russian Science Foundation, project no. 20-11-20261.
Presented: B. S. Kashin
Received: 14.07.2020
Revised: 14.07.2020
Accepted: 28.07.2020
English version:
Doklady Mathematics, 2020, Volume 102, Issue 2, Pages 396–400
DOI: https://doi.org/10.1134/S1064562420050361
Bibliographic databases:
Document Type: Article
UDC: 517.521.15, 517.589
Language: Russian
Citation: K. M. Mirzoev, T. A. Safonova, “Representations of $\zeta(2n+1)$ and related numbers in the form of definite integrals and rapidly convergent series”, Dokl. RAN. Math. Inf. Proc. Upr., 494 (2020), 48–52; Dokl. Math., 102:2 (2020), 396–400
Citation in format AMSBIB
\Bibitem{MirSaf20}
\by K.~M.~Mirzoev, T.~A.~Safonova
\paper Representations of $\zeta(2n+1)$ and related numbers in the form of definite integrals and rapidly convergent series
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 494
\pages 48--52
\mathnet{http://mi.mathnet.ru/danma116}
\crossref{https://doi.org/10.31857/S2686954320050380}
\zmath{https://zbmath.org/?q=an:7424649}
\elib{https://elibrary.ru/item.asp?id=44344647}
\transl
\jour Dokl. Math.
\yr 2020
\vol 102
\issue 2
\pages 396--400
\crossref{https://doi.org/10.1134/S1064562420050361}
Linking options:
  • https://www.mathnet.ru/eng/danma116
  • https://www.mathnet.ru/eng/danma/v494/p48
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:111
    Full-text PDF :44
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024