Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2020, Volume 27, Issue 1, Pages 110–126
DOI: https://doi.org/10.33048/daio.2020.27.664
(Mi da946)
 

Finding the subsets of variables of a partial Boolean function which are sufficient for its implementation in the classes defined by predicates

N. G. Parvatov

Tomsk State University, 36 Lenin Avenue, 634050 Tomsk, Russia
References:
Abstract: Given a class $K$ of partial Boolean functions and a partial Boolean function $f$ of $n$ variables, a subset $U$ of its variables is called sufficient for the implementation of $f$ in $K$ if there exists an extension of $f$ in $K$ with arguments in $U$. We consider the problem of recognizing all subsets sufficient for the implementation of $f$ in $K$. For some classes defined by relations, we propose the algorithms of solving this problem with complexity of $O(2^nn^2)$ bit operations. In particular, we present some algorithms of this complexity for the class $P_2^*$ of all partial Boolean functions and the class $M_2^*$ of all monotone partial Boolean functions. The proposed algorithms use the Walsh–Hadamard and Möbius transforms. Bibliogr. 21.
Keywords: partial Boolean function, sufficient subset of variables, Walsh–Hadamard transform, Möbius transform.
Received: 20.06.2019
Revised: 05.11.2019
Accepted: 27.11.2019
English version:
Journal of Applied and Industrial Mathematics, 2020, Volume 14, Issue 1, Pages 186–192
DOI: https://doi.org/10.1134/S1990478920010172
Bibliographic databases:
Document Type: Article
UDC: 519.97
Language: Russian
Citation: N. G. Parvatov, “Finding the subsets of variables of a partial Boolean function which are sufficient for its implementation in the classes defined by predicates”, Diskretn. Anal. Issled. Oper., 27:1 (2020), 110–126; J. Appl. Industr. Math., 14:1 (2020), 186–192
Citation in format AMSBIB
\Bibitem{Par20}
\by N.~G.~Parvatov
\paper Finding the subsets of variables of~a~partial~Boolean~function which~are~sufficient for~its~implementation in~the~classes defined by predicates
\jour Diskretn. Anal. Issled. Oper.
\yr 2020
\vol 27
\issue 1
\pages 110--126
\mathnet{http://mi.mathnet.ru/da946}
\crossref{https://doi.org/10.33048/daio.2020.27.664}
\transl
\jour J. Appl. Industr. Math.
\yr 2020
\vol 14
\issue 1
\pages 186--192
\crossref{https://doi.org/10.1134/S1990478920010172}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85082387136}
Linking options:
  • https://www.mathnet.ru/eng/da946
  • https://www.mathnet.ru/eng/da/v27/i1/p110
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:299
    Full-text PDF :71
    References:31
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024