Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2020, Volume 27, Issue 1, Pages 127–140
DOI: https://doi.org/10.33048/daio.2020.27.665
(Mi da947)
 

This article is cited in 2 scientific papers (total in 2 papers)

Constructing an instance of the cutting stock problem of minimum size which does not possess the integer round-up property

A. V. Ripatti, V. M. Kartak

Ufa State Aviation Technical University, 12 Karl Marx Street, 450008 Ufa, Russia
Full-text PDF (354 kB) Citations (2)
References:
Abstract: We consider the well-known one-dimensional cutting stock problem in order to find some integer instances with the minimal length $L$ of a stock material for which the round-up property is not satisfied. The difference between the exact solution of an instance of a cutting stock problem and the solution of its linear relaxation is called the integrality gap. Some instance of a cutting problem has the integer round-up property (IRUP) if its integrality gap is less than $1$. We present a new method for exhaustive search over the instances with maximal integrality gap when the values of $L$, the lengths of demanded pieces, and the optimal integer solution are fixed. This method allows us to prove by computing that all instances with $L \le 15$ have the round-up property. Also some instances are given with $L=16$ not-possessing this property, which gives an improvement of the best known result $L=18$. Tab. 2, bibliogr. 14.
Keywords: cutting stock problem, integer round-up property, integrality gap.
Funding agency Grant number
Russian Foundation for Basic Research 19-07-00895
This research is supported by Russian Foundation for Basic Research (Project 19–07–00895).
Received: 27.06.2019
Revised: 18.09.2019
Accepted: 27.11.2019
English version:
Journal of Applied and Industrial Mathematics, 2020, Volume 14, Issue 1, Pages 196–204
DOI: https://doi.org/10.1134/S1990478920010184
Bibliographic databases:
Document Type: Article
UDC: 519.85
Language: Russian
Citation: A. V. Ripatti, V. M. Kartak, “Constructing an instance of the cutting stock problem of minimum size which does not possess the integer round-up property”, Diskretn. Anal. Issled. Oper., 27:1 (2020), 127–140; J. Appl. Industr. Math., 14:1 (2020), 196–204
Citation in format AMSBIB
\Bibitem{RipKar20}
\by A.~V.~Ripatti, V.~M.~Kartak
\paper Constructing an instance of the cutting stock problem of~minimum size which does not possess the integer round-up property
\jour Diskretn. Anal. Issled. Oper.
\yr 2020
\vol 27
\issue 1
\pages 127--140
\mathnet{http://mi.mathnet.ru/da947}
\crossref{https://doi.org/10.33048/daio.2020.27.665}
\transl
\jour J. Appl. Industr. Math.
\yr 2020
\vol 14
\issue 1
\pages 196--204
\crossref{https://doi.org/10.1134/S1990478920010184}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85082386230}
Linking options:
  • https://www.mathnet.ru/eng/da947
  • https://www.mathnet.ru/eng/da/v27/i1/p127
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024