Abstract:
This paper is devoted to investigation of the swirl flows. Such flows are widely used in various industrial processes. Swirl flows can be accompanied by time-dependent effects, for example, precession of the vortex core. In turn, the large-scale fluctuations due to the precession of the vortex can cause damage of structures and reduce of equipment reliability. Thus, for engineering calculations approaches that sufficiently well described such flows are required. This paper presents the technique of swirl flows calculation, tested for CFD packages Fluent and SigmaFlow. A numerical simulation of several swirl flow test problems was carried out. Obtained results are compared with each other and with the experimental data.
Citation:
D. V. Platonov, A. V. Minakov, A. A. Dekterev, A. V. Sentyabov, “Numerical modeling of flows with flow swirling”, Computer Research and Modeling, 5:4 (2013), 635–648
\Bibitem{PlaMinDek13}
\by D.~V.~Platonov, A.~V.~Minakov, A.~A.~Dekterev, A.~V.~Sentyabov
\paper Numerical modeling of flows with flow swirling
\jour Computer Research and Modeling
\yr 2013
\vol 5
\issue 4
\pages 635--648
\mathnet{http://mi.mathnet.ru/crm424}
\crossref{https://doi.org/10.20537/2076-7633-2013-5-4-635-648}
Linking options:
https://www.mathnet.ru/eng/crm424
https://www.mathnet.ru/eng/crm/v5/i4/p635
This publication is cited in the following 9 articles:
Ya. E. Zharkov, Sh. T. Zhorzholiani, A. A. Sergeev, A. V. Agafonov, A. Y. Gorodkov, L. A. Bockeria, “Experimental and model study of swirling fluid flow in a converging channel as a simulation of blood flow in the heart and aorta”, Doklady Rossijskoj akademii nauk. Nauki o žizni, 515:1 (2024), 104
V. S. Toptalov, Yu. G. Chesnokov, O. M. Flisyuk, N. A. Martsulevich, I. G. Likhachev, “Analiz gidrodinamiki zakruchennykh potokov v pryamotochnykh tsiklonakh”, Žurnal prikladnoj himii, 2023, no. 1, 112
Y. E. Zharkov, S. T. Zhorzholiani, A. A. Sergeev, A. V. Agafonov, A. Y. Gorodkov, L. A. Bockeria, “Experimental and Model Study of a Swirling Fluid Flow in a Converging Channel As a Simulation of Blood Flow in the Heart and Aorta”, Dokl Biochem Biophys, 513:S1 (2023), S36
V. S. Toptalov, Yu. G. Chesnokov, O. M. Flisyuk, N. A. Martsulevich, I. G. Likhachev, “Analysis of the Hydrodynamics of Swirling Flows in Direct-Flow Cyclones”, Russ J Appl Chem, 96:1 (2023), 99
Z. M. Malikov, M. E. Madaliev, “Matematicheskoe modelirovanie turbulentnogo techeniya v tsentrobezhnom separatore”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2021, no. 71, 121–138
Erkin Madaliev, Murodil Madaliev, Kamol Adilov, Tohir Pulatov, D. Bazarov, “Comparison of turbulence models for two-phase flow in a centrifugal separator”, E3S Web Conf., 264 (2021), 01009
N. S. Bondareva, N. S. Gibanov, S. G. Martyushev, I. V. Miroshnichenko, M. A. Sheremet, “Sravnitelnyi analiz metodov konechnykh raznostei i kontrolnogo ob'ema na primere resheniya nestatsionarnoi zadachi estestvennoi konvektsii i teplovogo izlucheniya v zamknutom kube, zapolnennom diatermichnoi sredoi”, Kompyuternye issledovaniya i modelirovanie, 9:4 (2017), 567–578
Nikolai Vatin, K.I. Strelets, Nikita Kharkov, “Gas Dynamics in a Counterflow Cyclone with Conical Nozzles on the Exhaust Pipe”, AMM, 635-637 (2014), 17
Nikita Kharkov, Olga Ermak, Olesya Aver'yanova, “Numerical Simulation of the Centrifugal Separator for Oil-Water Emulsion”, AMR, 945-949 (2014), 944