Loading [MathJax]/jax/output/SVG/config.js
Computer Research and Modeling
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Computer Research and Modeling:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Computer Research and Modeling, 2013, Volume 5, Issue 4, Pages 623–634
DOI: https://doi.org/10.20537/2076-7633-2013-5-4-623-634
(Mi crm423)
 

This article is cited in 4 scientific papers (total in 4 papers)

MODELS IN PHYSICS AND TECHNOLOGY

Comparative analysis of Darcy and Brinkman models at studying of transient conjugate natural convection in a porous cylindrical cavity

T. A. Trifonovaa, M. A. Sheremetab

a Tomsk State University, 36 Lenin Prospekt, Tomsk, 634050, Russia
b Tomsk Polytechnic University, 30 Lenin Prospekt, Tomsk, 634050, Russia
References:
Abstract: Comparative analysis of two models of porous medium (Dacry and Brinkman) on an example of mathematical simulation of transient natural convection in a porous vertical cylindrical cavity with heat-conducting shell of finite thickness in conditions of convective cooling from an environment has been carried out. The boundary-value problem of mathematical physics formulated in dimensionless variables such as stream function, vorticity and temperature has been solved by implicit finite difference method. The presented verification results validate used numerical approach and also confirm that the solution is not dependent on the mesh size. Features of the conjugate heat transfer problems with considered models of porous medium have been determined.
Keywords: conjugate heat transfer, natural convection, Darcy–Boussinesq and Brinkman–Boussinesq approximations, porous vertical cylindrical cavity, transient regime, numerical simulation.
Received: 04.05.2013
Revised: 06.10.2013
Document Type: Article
UDC: 532:536.2
Language: Russian
Citation: T. A. Trifonova, M. A. Sheremet, “Comparative analysis of Darcy and Brinkman models at studying of transient conjugate natural convection in a porous cylindrical cavity”, Computer Research and Modeling, 5:4 (2013), 623–634
Citation in format AMSBIB
\Bibitem{TriShe13}
\by T.~A.~Trifonova, M.~A.~Sheremet
\paper Comparative analysis of Darcy and Brinkman models at studying of transient conjugate natural convection in a porous cylindrical cavity
\jour Computer Research and Modeling
\yr 2013
\vol 5
\issue 4
\pages 623--634
\mathnet{http://mi.mathnet.ru/crm423}
\crossref{https://doi.org/10.20537/2076-7633-2013-5-4-623-634}
Linking options:
  • https://www.mathnet.ru/eng/crm423
  • https://www.mathnet.ru/eng/crm/v5/i4/p623
  • This publication is cited in the following 4 articles:
    1. O. A. Simonov, L. N. Filimonova, “Influence of a water density maximum on the cooling of a water-saturated porous medium”, J. Appl. Mech. Tech. Phys., 62:4 (2021), 583–592  mathnet  crossref  crossref  elib
    2. D. S. Loenko, M. A. Sheremet, “Chislennoe modelirovanie estestvennoi konvektsii nenyutonovskoi zhidkosti v zamknutoi polosti”, Kompyuternye issledovaniya i modelirovanie, 12:1 (2020), 59–72  mathnet  crossref
    3. Jarrod Schiffbauer, Evgeny Demekhin, Georgy Ganchenko, “Transitions and Instabilities in Imperfect Ion-Selective Membranes”, IJMS, 21:18 (2020), 6526  crossref
    4. N. S. Gibanov, M. A. Sheremet, “Vliyanie polozheniya lokalnogo istochnika ob'emnogo teplovydeleniya polutsilindricheskoi formy na teploobmen vnutri zamknutogo kontura”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 28:1 (2018), 119–130  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Computer Research and Modeling
    Statistics & downloads:
    Abstract page:246
    Full-text PDF :196
    References:48
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025