Loading [MathJax]/jax/output/CommonHTML/jax.js
Computer Research and Modeling
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Computer Research and Modeling:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Computer Research and Modeling, 2013, Volume 5, Issue 4, Pages 607–622
DOI: https://doi.org/10.20537/2076-7633-2013-5-4-607-622
(Mi crm422)
 

This article is cited in 5 scientific papers (total in 5 papers)

MODELS IN PHYSICS AND TECHNOLOGY

The structure of site percolation models on three-dimensional square lattices

P. V. Moskalev

Voronezh State Agricultural University, 1 Michurin street, Voronezh, 394087, Russia
Full-text PDF (215 kB) Citations (5)
References:
Abstract: In this paper we consider the structure of site percolation models on three-dimensional square lattices with various shapes of (1, π)-neighborhood. For these models, are proposed iso- and anisotropic modifications of the invasion percolation algorithm with (1, 0)- and (1, π)-neighborhoods. All the above algorithms are special cases of the anisotropic invasion percolation algorithm on the n-dimensional lattice with a (1, π)-neighborhood. This algorithm is the basis for the package SPSL, released under GNU GPL-3 using the free programming language R.
Keywords: site percolation, n-dimensional square lattice, non-metric Minkowski distance, R programming language, SPSL package.
Received: 23.05.2013
Revised: 04.07.2013
Document Type: Article
UDC: 519.676
Language: Russian
Citation: P. V. Moskalev, “The structure of site percolation models on three-dimensional square lattices”, Computer Research and Modeling, 5:4 (2013), 607–622
Citation in format AMSBIB
\Bibitem{Mos13}
\by P.~V.~Moskalev
\paper The structure of site percolation models on three-dimensional square lattices
\jour Computer Research and Modeling
\yr 2013
\vol 5
\issue 4
\pages 607--622
\mathnet{http://mi.mathnet.ru/crm422}
\crossref{https://doi.org/10.20537/2076-7633-2013-5-4-607-622}
Linking options:
  • https://www.mathnet.ru/eng/crm422
  • https://www.mathnet.ru/eng/crm/v5/i4/p607
  • This publication is cited in the following 5 articles:
    1. D. V. Alekseev, G. A. Kazunina, “Soputstvuyuschaya klasternaya struktura, formiruemaya algoritmom Khammersli–Lisa–Aleksandrovitsa pri generatsii perkolyatsionnykh klasterov”, PDM, 2020, no. 47, 117–127  mathnet  crossref
    2. P.V. Moskalev, “Convergence of percolation probability functions to cumulative distribution functions on square lattices with (1,0)-neighborhood”, Physica A: Statistical Mechanics and its Applications, 553 (2020), 124657  crossref
    3. Iraida Stanovska, Oleksandr Stanovskyi, Igor Saukh, “INFORMATION TECHNOLOGY OF PROBLEMS SOLUTIONS SUPPORT IN A COMPLEX SYSTEM MANAGEMENT”, EUREKA: Physics and Engineering, 3 (2020), 30  crossref
    4. P. V. Moskalev, “Perkolyatsionnoe modelirovanie gidravlicheskogo gisterezisa v poristoi srede”, Kompyuternye issledovaniya i modelirovanie, 6:4 (2014), 543–558  mathnet  crossref
    5. P. V. Moskalev, “Estimates of threshold and strength of percolation clusters on squarelattices with (1, π)-neighborhood”, Computer Research and Modeling, 6:3 (2014), 405–414  mathnet  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Computer Research and Modeling
    Statistics & downloads:
    Abstract page:131
    Full-text PDF :85
    References:36
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025