Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2021, Volume 67, Issue 4, Pages 654–667
DOI: https://doi.org/10.22363/2413-3639-2021-67-4-654-667
(Mi cmfd441)
 

Statistical ergodic theorem in symmetric spaces for infinite measures

A. S. Vekslera, V. I. Chilinb

a Institute of Mathematics of the Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
b National University of Uzbekistan named after M. Ulugbek, Tashkent, Uzbekistan
References:
Abstract: Let $(\Omega, \mu)$ be a measurable space with $\sigma$-finite continuous measure, $\mu(\Omega) = \infty.$ A linear operator $T: L_1(\Omega) + L_\infty(\Omega)\to L_1(\Omega) + L_\infty(\Omega)$ is called the Dunford–Schwartz operator if $\|T(f)\|_1 \leqslant \|f\|_1$ (respectively, $\|T(f)\|_{\infty} \leqslant \|f\|_{\infty}$) for all $f\in L_1(\Omega)$ (respectively, $f\in L_\infty(\Omega)$). If $\{T_t\}_{t\geqslant 0} $ is a strongly continuous in $L_1(\Omega)$ semigroup of Dunford–Schwartz operators, then each operator $A_t(f) = \dfrac1t \int\limits_0^tT_s(f)ds \in L_1(\Omega),$ $f\in L_1(\Omega)$ has a unique extension to the Dunford–Schwartz operator, which is also denoted by $A_t,$ $t>0.$ It is proved that in the completely symmetric space $E(\Omega) \nsubseteq L_1$ of measurable functions on $(\Omega, \mu)$ the means $A_t$ converge strongly as $t\to +\infty$ for each strongly continuous in $L_1(\Omega)$ semigroup $\{T_t\}_{t\geqslant 0}$ of Dunford–Schwartz operators if and only if the norm $\|\cdot\|_{E(\Omega)} $ is order continuous.
Document Type: Article
UDC: 517.98
Language: Russian
Citation: A. S. Veksler, V. I. Chilin, “Statistical ergodic theorem in symmetric spaces for infinite measures”, Science — Technology — Education — Mathematics — Medicine, CMFD, 67, no. 4, PFUR, M., 2021, 654–667
Citation in format AMSBIB
\Bibitem{VekChi21}
\by A.~S.~Veksler, V.~I.~Chilin
\paper Statistical ergodic theorem in symmetric spaces for infinite measures
\inbook Science — Technology — Education — Mathematics — Medicine
\serial CMFD
\yr 2021
\vol 67
\issue 4
\pages 654--667
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd441}
\crossref{https://doi.org/10.22363/2413-3639-2021-67-4-654-667}
Linking options:
  • https://www.mathnet.ru/eng/cmfd441
  • https://www.mathnet.ru/eng/cmfd/v67/i4/p654
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ñîâðåìåííàÿ ìàòåìàòèêà. Ôóíäàìåíòàëüíûå íàïðàâëåíèÿ
    Statistics & downloads:
    Abstract page:126
    Full-text PDF :65
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024