Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2021, Volume 67, Issue 4, Pages 668–692
DOI: https://doi.org/10.22363/2413-3639-2021-67-4-668-692
(Mi cmfd442)
 

Weierstrass polynomials in estimates of oscillatory integrals

I. A. Ikromov, A. S. Sadullaev

Samarkand State University named after A. Navoi, Samarkand, Uzekistan
References:
Abstract: In this paper, estimates are obtained for the Fourier transform of smooth charges (measures) concentrated on some nonconvex hypersurfaces. The summability of the maximal Randall function is proved for a wide class of nonconvex hypersurfaces. In addition, in the three-dimensional case, estimates are obtained depending on the Varchenko height. The accuracy of the obtained estimates is proved. The proof of the estimate for oscillatory integrals is based on the Weierstrass preparatory theorem.
Funding agency Grant number
Academy of Sciences of the Republic of Uzbekistan ОТ-Ф-4-69
ОТ-Ф-4-37/29
Document Type: Article
UDC: 517.518
Language: Russian
Citation: I. A. Ikromov, A. S. Sadullaev, “Weierstrass polynomials in estimates of oscillatory integrals”, Science — Technology — Education — Mathematics — Medicine, CMFD, 67, no. 4, PFUR, M., 2021, 668–692
Citation in format AMSBIB
\Bibitem{IkrSad21}
\by I.~A.~Ikromov, A.~S.~Sadullaev
\paper Weierstrass polynomials in estimates of oscillatory integrals
\inbook Science — Technology — Education — Mathematics — Medicine
\serial CMFD
\yr 2021
\vol 67
\issue 4
\pages 668--692
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd442}
\crossref{https://doi.org/10.22363/2413-3639-2021-67-4-668-692}
Linking options:
  • https://www.mathnet.ru/eng/cmfd442
  • https://www.mathnet.ru/eng/cmfd/v67/i4/p668
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:110
    Full-text PDF :47
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024