Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2015, Volume 58, Pages 96–110 (Mi cmfd281)  

This article is cited in 1 scientific paper (total in 1 paper)

On some degenerate elliptic equations arising in geometric problems

I. Capuzzo Dolcettaa, F. Leonia, A. Vitolob

a Dipartimento di Matematica, Sapienza Università di Roma, Ilaly
b Dipartimento di Matematica, Università di Salerno, Italy
Full-text PDF (200 kB) Citations (1)
References:
Abstract: We consider some fully nonlinear degenerate elliptic operators and we investigate the validity of certain properties related to the maximum principle. In particular, we establish the equivalence between the sign propagation property and the strict positivity of a suitably defined generalized principal eigenvalue. Furthermore, we show that even in the degenerate case considered in the present paper, the well-known condition introduced by Keller–Osserman on the zero-order term is necessary and sufficient for the existence of entire weak subsolutions.
English version:
Journal of Mathematical Sciences, 2018, Volume 233, Issue 4, Pages 446–461
DOI: https://doi.org/10.1007/s10958-018-3937-3
Document Type: Article
UDC: 517
Language: Russian
Citation: I. Capuzzo Dolcetta, F. Leoni, A. Vitolo, “On some degenerate elliptic equations arising in geometric problems”, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 1, CMFD, 58, PFUR, M., 2015, 96–110; Journal of Mathematical Sciences, 233:4 (2018), 446–461
Citation in format AMSBIB
\Bibitem{CapLeoVit15}
\by I.~Capuzzo Dolcetta, F.~Leoni, A.~Vitolo
\paper On some degenerate elliptic equations arising in geometric problems
\inbook Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22--29, 2014). Part~1
\serial CMFD
\yr 2015
\vol 58
\pages 96--110
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd281}
\transl
\jour Journal of Mathematical Sciences
\yr 2018
\vol 233
\issue 4
\pages 446--461
\crossref{https://doi.org/10.1007/s10958-018-3937-3}
Linking options:
  • https://www.mathnet.ru/eng/cmfd281
  • https://www.mathnet.ru/eng/cmfd/v58/p96
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:253
    Full-text PDF :238
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024