Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2015, Volume 58, Pages 111–127 (Mi cmfd282)  

On feedback-principle control for systems with aftereffect under incomplete phase-coordinate data

V. S. Kublanova, V. I. Maksimovba

a Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg, Russia
b Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
References:
Abstract: For a nonlinear system of differential equations with aftereffect, two mutually complement game minimax (maximin) problems for the quality functional are considered. Assuming that a part of phase coordinates of the system is measured (with error) sufficiently frequently, we provide solving algorithms that are stable with respect to the information noise and computational errors. The proposed algorithms are based on the Krasovskii extremal translation principle.
Funding agency Grant number
Russian Science Foundation 14-11-00539
English version:
Journal of Mathematical Sciences, 2018, Volume 233, Issue 4, Pages 495–513
DOI: https://doi.org/10.1007/s10958-018-3940-8
Document Type: Article
UDC: 517.977
Language: Russian
Citation: V. S. Kublanov, V. I. Maksimov, “On feedback-principle control for systems with aftereffect under incomplete phase-coordinate data”, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 1, CMFD, 58, PFUR, M., 2015, 111–127; Journal of Mathematical Sciences, 233:4 (2018), 495–513
Citation in format AMSBIB
\Bibitem{KubMak15}
\by V.~S.~Kublanov, V.~I.~Maksimov
\paper On feedback-principle control for systems with aftereffect under incomplete phase-coordinate data
\inbook Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22--29, 2014). Part~1
\serial CMFD
\yr 2015
\vol 58
\pages 111--127
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd282}
\transl
\jour Journal of Mathematical Sciences
\yr 2018
\vol 233
\issue 4
\pages 495--513
\crossref{https://doi.org/10.1007/s10958-018-3940-8}
Linking options:
  • https://www.mathnet.ru/eng/cmfd282
  • https://www.mathnet.ru/eng/cmfd/v58/p111
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:309
    Full-text PDF :83
    References:82
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024