Loading [MathJax]/jax/output/SVG/config.js
Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2011, Volume 39, Pages 36–65 (Mi cmfd172)  

This article is cited in 32 scientific papers (total in 32 papers)

Spectral analysis and correct solvability of abstract integrodifferential equations arising in thermophysics and acoustics

V. V. Vlasova, N. A. Rautianb, A. S. Shamaeva

a Moscow Lomonosov State University, Faculty of Mechanics and Mathematics, Moscow, Russia
b Russian Plekhanov Academy of Economics, Faculty of Economics and Mathematics, Moscow, Russia
References:
Abstract: In the present paper, we study integrodifferential equations with unbounded operator coefficients in Hilbert spaces. The principal part of the equation is an abstract hyperbolic equation perturbed by summands with Volterra integral operators. These equations represent an abstract form of the Gurtin–Pipkin integrodifferential equation describing the process of heat conduction in media with memory and the process of sound conduction in viscoelastic media and arise in averaging problems in perforated media (the Darcy law).
The correct solvability of initial-boundary problems for the specified equations is established in weighted Sobolev spaces on a positive semiaxis.
Spectral problems for operator-functions are analyzed. Such functions are symbols of these equations. The spectrum of the abstract integrodifferential Gurtin–Pipkin equation is investigated.
English version:
Journal of Mathematical Sciences, 2013, Volume 190, Issue 1, Pages 34–65
DOI: https://doi.org/10.1007/s10958-013-1245-5
Bibliographic databases:
Document Type: Article
UDC: 517.929
Language: Russian
Citation: V. V. Vlasov, N. A. Rautian, A. S. Shamaev, “Spectral analysis and correct solvability of abstract integrodifferential equations arising in thermophysics and acoustics”, Partial differential equations, CMFD, 39, PFUR, M., 2011, 36–65; Journal of Mathematical Sciences, 190:1 (2013), 34–65
Citation in format AMSBIB
\Bibitem{VlaRauSha11}
\by V.~V.~Vlasov, N.~A.~Rautian, A.~S.~Shamaev
\paper Spectral analysis and correct solvability of abstract integrodifferential equations arising in thermophysics and acoustics
\inbook Partial differential equations
\serial CMFD
\yr 2011
\vol 39
\pages 36--65
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd172}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2830676}
\transl
\jour Journal of Mathematical Sciences
\yr 2013
\vol 190
\issue 1
\pages 34--65
\crossref{https://doi.org/10.1007/s10958-013-1245-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84874950458}
Linking options:
  • https://www.mathnet.ru/eng/cmfd172
  • https://www.mathnet.ru/eng/cmfd/v39/p36
  • This publication is cited in the following 32 articles:
    1. Andrey B. Muravnik, Grigorii L. Rossovskii, “Cauchy Problem with Summable Initial-Value Functions for Parabolic Equations with Translated Potentials”, Mathematics, 12:6 (2024), 895  crossref
    2. I. V. Romanov, A. S. Shamaev, “On the existence of a wave front in the Cauchy problem for the Gurtin–Pipkin equation”, Math. Notes, 116:4 (2024), 862–866  mathnet  crossref  crossref
    3. O. V. Solonukha, “Nonlinear Differential-Difference Equations of Elliptic and Parabolic Type and Their Applications to Nonlocal Problems”, J Math Sci, 2024  crossref
    4. O. V. Solonukha, “Nelineinye differentsialno-raznostnye uravneniya ellipticheskogo i parabolicheskogo tipa i ikh prilozheniya k nelokalnym zadacham”, SMFN, 69, no. 3, Rossiiskii universitet druzhby narodov, M., 2023, 445–563  mathnet  crossref
    5. Andrey B. Muravnik, “Differential-Difference Elliptic Equations with Nonlocal Potentials in Half-Spaces”, Mathematics, 11:12 (2023), 2698  crossref
    6. Jian-Hua Chen, Lin Fu, Hua-Cheng Zhou, “Infinite-Time Admissibility of the Gurtin–Pipkin Systems in Hilbert Spaces”, SIAM J. Control Optim., 60:1 (2022), 505  crossref
    7. I. V. Romanov, A. S. Shamaev, “Exact Control of a Distributed System Described by the Wave Equation with Integral Memory”, J Math Sci, 262:3 (2022), 358  crossref
    8. V. V. Vlasov, N. A. Rautian, “Issledovanie integrodifferentsialnykh uravnenii metodami spektralnoi teorii”, Posvyaschaetsya pamyati professora N.D. Kopachevskogo, SMFN, 67, no. 2, Rossiiskii universitet druzhby narodov, M., 2021, 255–284  mathnet  crossref
    9. S. K. Zarifzoda, R. N. Odinaev, “Issledovanie nekotorykh klassov integro-differentsialnykh uravnenii v chastnykh proizvodnykh vtorogo poryadka so stepenno-logarifmicheskoi osobennostyu v yadre”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2020, no. 67, 40–54  mathnet  crossref
    10. V. V. Vlasov, N. A. Rautian, “Well-posedness and spectral analysis of integrodifferential equations of hereditary mechanics”, Comput. Math. Math. Phys., 60:8 (2020), 1322–1330  mathnet  crossref  crossref  isi  elib
    11. V. V. Vlasov, N. A. Rautian, “A study of operator models arising in problems of hereditary mechanics”, J. Math. Sci. (N. Y.), 244:2 (2020), 170–182  mathnet  crossref  elib
    12. D. A. Zakora, “Predstavlenie reshenii odnogo integro-differentsialnogo uravneniya i prilozheniya”, Materialy Voronezhskoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy». 28 yanvarya–2 fevralya 2019 g.  Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 171, VINITI RAN, M., 2019, 78–93  mathnet  crossref
    13. A. V. Davydov, Yu. A. Tikhonov, “On Properties of the Spectrum of an Operator Pencil Arising in Viscoelasticity Theory”, Math. Notes, 103:5 (2018), 841–845  mathnet  crossref  crossref  mathscinet  isi  elib
    14. V. V. Vlasov, N. A. Rautian, “Issledovanie operatornykh modelei, voznikayuschikh v teorii vyazkouprugosti”, Differentsialnye i funktsionalno-differentsialnye uravneniya, SMFN, 64, no. 1, Rossiiskii universitet druzhby narodov, M., 2018, 60–73  mathnet  crossref
    15. V. V. Vlasov, R. Perez Ortiz, N. A. Rautian, “Study of Volterra Integro-Differential Equations with Kernels Depending on a Parameter”, Diff Equat, 54:3 (2018), 363  crossref
    16. V. V. Vlasov, N. A. Rautian, “Well-Posedness and Spectral Analysis of Volterra Integro-Differential Equations with Singular Kernels”, Dokl. Math., 98:2 (2018), 502  crossref
    17. Vlasov V.V., Rautian N.A., “Study of Functional-Differential Equations With Unbounded Operator Coefficients”, Dokl. Math., 96:3 (2017), 620–624  crossref  zmath  isi  scopus
    18. V. V. Vlasov, N. A. Rautian, “Spektralnyi analiz integrodifferentsialnykh uravnenii v gilbertovom prostranstve”, Trudy seminara po differentsialnym i funktsionalno-differentsialnym uravneniyam v RUDN pod rukovodstvom A. L. Skubachevskogo, SMFN, 62, RUDN, M., 2016, 53–71  mathnet
    19. N. A. Rautian, V. V. Vlasov, Springer Proceedings in Mathematics & Statistics, 164, Differential and Difference Equations with Applications, 2016, 411  crossref
    20. V. V. Vlasov, N. A. Rautian, “Study of Volterra integro-differential equations arising in viscoelasticity theory”, Dokl. Math., 94:3 (2016), 639  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:878
    Full-text PDF :311
    References:82
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025