Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2011, Volume 39, Pages 11–35 (Mi cmfd171)  

This article is cited in 11 scientific papers (total in 11 papers)

Spectral problems in Lipschitz domains

M. S. Agranovich

Moscow Institute of Electronics and Mathematics
References:
Abstract: The paper is devoted to spectral problems for strongly elliptic second-order systems in bounded Lipschitz domains. We consider the spectral Dirichlet and Neumann problems and three problems with spectral parameter in conditions at the boundary: the Poincaré–Steklov problem and two transmission problems. In the style of a survey, we discuss the main properties of these problems, both self-adjoint and non-self-adjoint. As a preliminary, we explain several facts of the general theory of the main boundary value problems in Lipschitz domains. The original definitions are variational. The use of the boundary potentials is based on results on the unique solvability of the Dirichlet and Neumann problems. In the main part of the paper, we use the simplest Hilbert $L_2$-spaces $H^s$, but we describe some generalizations to Banach spaces $H^s_p$ of Bessel potentials and Besov spaces $B^s_p$ at the end of the paper.
English version:
Journal of Mathematical Sciences, 2013, Volume 190, Issue 1, Pages 8–33
DOI: https://doi.org/10.1007/s10958-013-1244-6
Bibliographic databases:
Document Type: Article
UDC: 517.984.5
Language: Russian
Citation: M. S. Agranovich, “Spectral problems in Lipschitz domains”, Partial differential equations, CMFD, 39, PFUR, M., 2011, 11–35; Journal of Mathematical Sciences, 190:1 (2013), 8–33
Citation in format AMSBIB
\Bibitem{Agr11}
\by M.~S.~Agranovich
\paper Spectral problems in Lipschitz domains
\inbook Partial differential equations
\serial CMFD
\yr 2011
\vol 39
\pages 11--35
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd171}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2830675}
\transl
\jour Journal of Mathematical Sciences
\yr 2013
\vol 190
\issue 1
\pages 8--33
\crossref{https://doi.org/10.1007/s10958-013-1244-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84874946434}
Linking options:
  • https://www.mathnet.ru/eng/cmfd171
  • https://www.mathnet.ru/eng/cmfd/v39/p11
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:712
    Full-text PDF :243
    References:87
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024