Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2020, Volume 21, Issue 4, Pages 129–139
DOI: https://doi.org/10.22405/2226-8383-2018-21-4-129-139
(Mi cheb958)
 

The images of multilinear non-associative polynomials evaluated on a rock-paper-scissors algebra with unit over an arbitrary field and its subalgebras

S. Malev, C. Pines

Ariel University of Samaria (Ariel, Israel)
References:
Abstract: Let ${\mathbb F}$ be an arbitrary field. We consider a commutative, non-associative, $4$-dimensional algebra ${\mathfrak M}$ of the rock, the paper and the scissors with unit over ${\mathbb F}$ and we prove that the image over ${\mathfrak M}$ of every non-associative multilinear polynomial over ${\mathbb F}$ is a vector space. The same question we consider for two subalgebras: an algebra of the rock, the paper and the scissors without unit, and an algebra of trace zero elements with zero scalar part. Moreover in this paper we consider the questions of possible eveluations of homogeneous polynomials on these algebras.
Keywords: L'vov-Kaplansky Conjecture, multilinear polynomials, non-associative algebras, polynomial identities.
Received: 27.05.2020
Accepted: 22.10.2020
Document Type: Article
UDC: 512.554
Language: English
Citation: S. Malev, C. Pines, “The images of multilinear non-associative polynomials evaluated on a rock-paper-scissors algebra with unit over an arbitrary field and its subalgebras”, Chebyshevskii Sb., 21:4 (2020), 129–139
Citation in format AMSBIB
\Bibitem{MalPin20}
\by S.~Malev, C.~Pines
\paper The images of multilinear non-associative polynomials evaluated on a rock-paper-scissors algebra with unit over an arbitrary field and its subalgebras
\jour Chebyshevskii Sb.
\yr 2020
\vol 21
\issue 4
\pages 129--139
\mathnet{http://mi.mathnet.ru/cheb958}
\crossref{https://doi.org/10.22405/2226-8383-2018-21-4-129-139}
Linking options:
  • https://www.mathnet.ru/eng/cheb958
  • https://www.mathnet.ru/eng/cheb/v21/i4/p129
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:68
    Full-text PDF :32
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024