|
A compactness result for non-periodic structures and its application to homogenization of diffusion-convection equations
A. M. Meirmanova, O. V. Galtsevb a Moscow Technical University of Communications and Informatics (Moscow)
b Belgorod State National Research University (Belgorod)
Abstract:
The paper proves the strong compactness of the sequence $\{\tilde{c}^{ \varepsilon}(\boldsymbol{x},t)\}$ in $\mathbb{L}_{2}(\Omega_{T})$, $\Omega_{T}=\Omega\times(0,\\T)$, $\Omega\subset \mathbb{R}^{3}$, bounded in the space $\mathbb{W}^{1,0}_{2}(\Omega_{T})$ with the sequence of time derivatives $\Big\{ \displaystyle \frac{\partial}{\partial t}\big(\chi(\boldsymbol{x},t,\frac{\boldsymbol{x}}{\varepsilon})\Big.$ $\Big.\tilde{c}^{ \varepsilon}(\boldsymbol{x},t)\big) \Big\}$ bounded in the space $\mathbb{L}_{2}\big((0,T);\mathbb{W}^{-1}_{2}(\Omega)\big)$, where characteristic function $\chi(\boldsymbol{x},t,\boldsymbol{y})$ is $1$-periodic in a variable $\displaystyle \boldsymbol{y}\in Y= \left(-\frac{1}{2},\frac{1}{2} \right)^{3}\subset \mathbb{R}^{3}$.
As an application we consider the homogenization of a diffusion-convection equation in non-periodic structure, given by $1$-periodic in $\boldsymbol{y}$ characteristic function $\chi(\boldsymbol{x},t,\boldsymbol{y})$ with a sequence of divergent-free velocities $\{\boldsymbol{v}^{\varepsilon}(\boldsymbol{x},t)\}$ weakly convergent in $\mathbb{L}_{2}(\Omega_{T})$.
Keywords:
compactness lemma, homogenization, square-summable derivatives.
Received: 11.03.2020 Accepted: 22.10.2020
Citation:
A. M. Meirmanov, O. V. Galtsev, “A compactness result for non-periodic structures and its application to homogenization of diffusion-convection equations”, Chebyshevskii Sb., 21:4 (2020), 140–151
Linking options:
https://www.mathnet.ru/eng/cheb959 https://www.mathnet.ru/eng/cheb/v21/i4/p140
|
|