Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2020, Volume 21, Issue 4, Pages 140–151
DOI: https://doi.org/10.22405/2226-8383-2018-21-4-140-151
(Mi cheb959)
 

A compactness result for non-periodic structures and its application to homogenization of diffusion-convection equations

A. M. Meirmanova, O. V. Galtsevb

a Moscow Technical University of Communications and Informatics (Moscow)
b Belgorod State National Research University (Belgorod)
References:
Abstract: The paper proves the strong compactness of the sequence $\{\tilde{c}^{ \varepsilon}(\boldsymbol{x},t)\}$ in $\mathbb{L}_{2}(\Omega_{T})$, $\Omega_{T}=\Omega\times(0,\\T)$, $\Omega\subset \mathbb{R}^{3}$, bounded in the space $\mathbb{W}^{1,0}_{2}(\Omega_{T})$ with the sequence of time derivatives $\Big\{ \displaystyle \frac{\partial}{\partial t}\big(\chi(\boldsymbol{x},t,\frac{\boldsymbol{x}}{\varepsilon})\Big.$ $\Big.\tilde{c}^{ \varepsilon}(\boldsymbol{x},t)\big) \Big\}$ bounded in the space $\mathbb{L}_{2}\big((0,T);\mathbb{W}^{-1}_{2}(\Omega)\big)$, where characteristic function $\chi(\boldsymbol{x},t,\boldsymbol{y})$ is $1$-periodic in a variable $\displaystyle \boldsymbol{y}\in Y= \left(-\frac{1}{2},\frac{1}{2} \right)^{3}\subset \mathbb{R}^{3}$.
As an application we consider the homogenization of a diffusion-convection equation in non-periodic structure, given by $1$-periodic in $\boldsymbol{y}$ characteristic function $\chi(\boldsymbol{x},t,\boldsymbol{y})$ with a sequence of divergent-free velocities $\{\boldsymbol{v}^{\varepsilon}(\boldsymbol{x},t)\}$ weakly convergent in $\mathbb{L}_{2}(\Omega_{T})$.
Keywords: compactness lemma, homogenization, square-summable derivatives.
Funding agency Grant number
Russian Science Foundation 19-71-00105
Received: 11.03.2020
Accepted: 22.10.2020
Document Type: Article
UDC: 51-7
Language: Russian
Citation: A. M. Meirmanov, O. V. Galtsev, “A compactness result for non-periodic structures and its application to homogenization of diffusion-convection equations”, Chebyshevskii Sb., 21:4 (2020), 140–151
Citation in format AMSBIB
\Bibitem{MeiGal20}
\by A.~M.~Meirmanov, O.~V.~Galtsev
\paper A compactness result for non-periodic structures and its application to homogenization of diffusion-convection equations
\jour Chebyshevskii Sb.
\yr 2020
\vol 21
\issue 4
\pages 140--151
\mathnet{http://mi.mathnet.ru/cheb959}
\crossref{https://doi.org/10.22405/2226-8383-2018-21-4-140-151}
Linking options:
  • https://www.mathnet.ru/eng/cheb959
  • https://www.mathnet.ru/eng/cheb/v21/i4/p140
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024