Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2019, Volume 20, Issue 1, Pages 197–203
DOI: https://doi.org/10.22405/2226-8383-2018-20-1-197-203
(Mi cheb726)
 

On Newman polynomials without roots on the unit circle

A. Dubickas

Institute of Mathematics, Vilnius University, Vilnius (Lithuania)
References:
Abstract: In this note we give a necessary and sufficient condition on the triplet of nonnegative integers $a<b<c$ for which the Newman polynomial $\sum_{j=0}^a x^j + \sum_{j=b}^c x^j$ has a root on the unit circle. From this condition we derive that for each $d \geq 3$ there is a positive integer $n>d$ such that the Newman polynomial $1+x+\dots+x^{d-2}+x^n$ of length $d$ has no roots on the unit circle.
Keywords: Newman polynomial, root of unity.
Received: 12.12.2018
Accepted: 10.04.2019
Document Type: Article
UDC: 512.62
Language: English
Citation: A. Dubickas, “On Newman polynomials without roots on the unit circle”, Chebyshevskii Sb., 20:1 (2019), 197–203
Citation in format AMSBIB
\Bibitem{Dub19}
\by A.~Dubickas
\paper On Newman polynomials without roots on the unit circle
\jour Chebyshevskii Sb.
\yr 2019
\vol 20
\issue 1
\pages 197--203
\mathnet{http://mi.mathnet.ru/cheb726}
\crossref{https://doi.org/10.22405/2226-8383-2018-20-1-197-203}
Linking options:
  • https://www.mathnet.ru/eng/cheb726
  • https://www.mathnet.ru/eng/cheb/v20/i1/p197
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025