Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2019, Volume 20, Issue 1, Pages 180–196
DOI: https://doi.org/10.22405/2226-8383-2018-20-1-180-196
(Mi cheb725)
 

This article is cited in 11 scientific papers (total in 11 papers)

Dirichlet series algebra of a monoid of natural numbers

N. N. Dobrovol'skiiab, M. N. Dobrovol'skiic, N. M. Dobrovol'skiib, I. N. Balabab, I. Yu. Rebrovab

a Tula State University, Tula
b Tula State L. N. Tolstoy Pedagogical University, Tula
c Geophysical centre of RAS, Moscow
References:
Abstract: In this paper, for an arbitrary monoid of natural numbers, the foundations of the Dirichlet series algebra are constructed either over a numerical field or over a ring of integers of an algebraic numerical field.
For any numerical field $\mathbb{K}$, it is shown that the set $\mathbb{D}^*(M)_{\mathbb{K}}$ of all reversible Dirichlet series of $\mathbb{D}(M)_{\mathbb{K}}$ is an infinite Abelian group consisting of series whose first coefficient is nonzero.
We introduce the notion of an integer Dirichlet monoid of natural numbers that form an algebra over a ring of algebraic integers $\mathbb{Z}_\mathbb{K}$ of the algebraic field $\mathbb{K}$. It is shown that for a group $\mathbb{U}_\mathbb{K}$ of algebraic units of the ring of algebraic integers of $\mathbb{Z}_\mathbb{K}$ an algebraic field $\mathbb{K}$ the set of $\mathbb{D}(M)_{\mathbb{U}_\mathbb{K}}$ of entire Dirichlet series, $a(1)\in\mathbb{U}_\mathbb{K}$, is multiplicative group.
For any Dirichlet series from the Dirichlet series algebra of a monoid of natural numbers, the reduced series, the irreversible part and the additional series are determined. A formula for decomposition of an arbitrary Dirichlet series into the product of the reduced series and a construction of an irreversible part and an additional series is found.
For any monoid of natural numbers allocated to the algebra of Dirichlet series, convergent in the entire complex domain. The Dirichlet series algebra with a given half-plane of absolute convergence is also constructed. It is shown that for any nontrivial monoid $M$ and for any real $\sigma_0$, there is an infinite set of Dirichlet series of $\mathbb{D}(M)$ such that the domain of their holomorphism is $\alpha$-half-plane $\sigma>\sigma_0$.
With the help of the universality theorem S. M. Voronin managed to prove the weak form of the universality theorem for a wide class of Zeta functions of monoids of natural numbers.
In conclusion describes the actual problem with the Zeta functions of monoids of natural numbers that require further research. In particular, if the Linnik–Ibrahimov hypothesis is true, then a strong theorem of universality should be valid for them.
Keywords: Riemann zeta function, Dirichlet series, zeta function of the monoid of natural numbers, Euler product, universality theorem, Dirichlet series algebra.
Funding agency Grant number
Russian Foundation for Basic Research 19-41-710004_р_а
The reported study was funded by RFBR, project number 19-41-710004_r_a.
Received: 04.12.2018
Accepted: 10.04.2019
Document Type: Article
UDC: 511.3
Language: Russian
Citation: N. N. Dobrovol'skii, M. N. Dobrovol'skii, N. M. Dobrovol'skii, I. N. Balaba, I. Yu. Rebrova, “Dirichlet series algebra of a monoid of natural numbers”, Chebyshevskii Sb., 20:1 (2019), 180–196
Citation in format AMSBIB
\Bibitem{DobDobDob19}
\by N.~N.~Dobrovol'skii, M.~N.~Dobrovol'skii, N.~M.~Dobrovol'skii, I.~N.~Balaba, I.~Yu.~Rebrova
\paper Dirichlet series algebra of a monoid of natural numbers
\jour Chebyshevskii Sb.
\yr 2019
\vol 20
\issue 1
\pages 180--196
\mathnet{http://mi.mathnet.ru/cheb725}
\crossref{https://doi.org/10.22405/2226-8383-2018-20-1-180-196}
Linking options:
  • https://www.mathnet.ru/eng/cheb725
  • https://www.mathnet.ru/eng/cheb/v20/i1/p180
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025