Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2019, Volume 20, Issue 1, Pages 148–163
DOI: https://doi.org/10.22405/2226-8383-2018-20-1-148-163
(Mi cheb723)
 

This article is cited in 12 scientific papers (total in 12 papers)

One model Zeta function of the monoid of natural numbers

N. N. Dobrovol'skyab

a Tula State University, Tula
b Tula State L. N. Tolstoy Pedagogical University, Tula
References:
Abstract: The paper studies the Zeta function $\zeta(M(p_1,p_2)|\alpha)$ of the monoid $M (p_1,p_2)$ generated by Prime numbers $p_1<p_2$ of the form $3n+2$. Next,the main monoid $M_{3,1}(p_1,p_2)\subset M(p_1,p_2)$ and the main set $ A_{3,1}(p_1,p_2)= M(p_1,p_2)\setminus M_{3,1}(p_1, p_2)$ are distinguished. For the corresponding Zeta functions, explicit finite formulas are found that give an analytic continuation on the entire complex plane except for the countable set of poles. Inverse series for these Zeta functions and functional equations are found.
The paper gives definitions of three new types of monoids of natural numbers with a unique decomposition into simple elements: monoids of degrees, Euler monoids modulo $q$ and unit monoids modulo $q$. Provided the expression of the Zeta functions using the Euler product.
The paper discusses the effect Davenport–Heilbronn Zeta-functions of monoids of natural numbers that is associated with the appearance of zeros of the Zeta-functions of terms obtained by the classes of residues modulo.
For monoids with an exponential sequence of primes, the barrier series hypothesis is proved and it is shown that the holomorphic domain of the Zeta function of such a monoid is the complex half-plane to the right of the imaginary axis.
In conclusion, topical problems with zeta-functions of monoids of natural numbers that require further investigation are considered.
Keywords: Riemann zeta function, Dirichlet series, zeta function of the monoid of natural numbers, Euler product.
Funding agency Grant number
Russian Foundation for Basic Research 19-41-710005_р_а
The reported study was funded by RFBR, project number 19-41-710005_r_a.
Received: 04.12.2018
Accepted: 10.04.2019
English version:
Doklady Mathematics (Supplementary issues), 2022, Volume 106, Issue 2, Pages 192–200
DOI: https://doi.org/10.1134/S1064562422700193
Document Type: Article
UDC: 511.3
Language: Russian
Citation: N. N. Dobrovol'sky, “One model Zeta function of the monoid of natural numbers”, Chebyshevskii Sb., 20:1 (2019), 148–163; Doklady Mathematics (Supplementary issues), 106:2 (2022), 192–200
Citation in format AMSBIB
\Bibitem{Dob19}
\by N.~N.~Dobrovol'sky
\paper One model Zeta function of the monoid of natural numbers
\jour Chebyshevskii Sb.
\yr 2019
\vol 20
\issue 1
\pages 148--163
\mathnet{http://mi.mathnet.ru/cheb723}
\crossref{https://doi.org/10.22405/2226-8383-2018-20-1-148-163}
\transl
\jour Doklady Mathematics (Supplementary issues)
\yr 2022
\vol 106
\issue 2
\pages 192--200
\crossref{https://doi.org/10.1134/S1064562422700193}
Linking options:
  • https://www.mathnet.ru/eng/cheb723
  • https://www.mathnet.ru/eng/cheb/v20/i1/p148
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025