Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2019, Volume 20, Issue 1, Pages 164–179
DOI: https://doi.org/10.22405/2226-8383-2018-20-1-164-179
(Mi cheb724)
 

This article is cited in 7 scientific papers (total in 7 papers)

Monoids of natural numbers in the numerical-theoretical method in the approximate analysis

N. N. Dobrovol'skiiab, N. M. Dobrovol'skiib, I. Yu. Rebrovab, A. V. Rodionovb

a Tula State University, Tula
b Tula State L. N. Tolstoy Pedagogical University, Tula
Full-text PDF (783 kB) Citations (7)
References:
Abstract: For every monoid $M$ of natural numbers defined a new class of periodic functions $M_s^\alpha$, which is a subclass of a known class of periodic functions Korobov $E_s^\alpha$. With respect to the norm $\|f(\vec{x})\|_{E_s^\alpha}$, the class $M_s^\alpha$ is an inseparable Banach subspace of class $E_s^\alpha$.
It is established that the class $M_s^\alpha$ is closed with respect to the action of the Fredholm integral operator and the Fredholm integral equation of the second kind is solvable on this class.
In this paper we obtain estimates of the image norm of the integral operator, which contain the kernel norm and the $s$-th degree of the Zeta function of the monoid $M$. Estimates are obtained for the parameter $\lambda$, in which the integral operator $A_{\lambda,f}$ is a compression. The theorem on the representation of the unique solution of Fredholm integral equation of the second kind in the form of Neumann series is proved.
The paper deals with the problems of solving the partial differential equation with the differential operator $Q\left(\frac{\partial }{\partial x_1},\ldots,\frac{\partial }{\partial x_s}\right)$ in the space $M^\alpha_{s}$, which depends on the arithmetic properties of the spectrum of this operator.
A paradoxical fact is found that for a monoid $M_{q,1}$ of numbers comparable to 1 modulo $q$, a quadrature formula with a parallelepiped grid for an admissible set of coefficients modulo $q$ is exact on the class $M_{q,1,s}^\alpha$. Moreover, this statement remains true for the class $M_{q,a,s}^\alpha$ with $1<a<q$ when $q$ is a Prime number. Since the functions of class $M_{q,a,s}^\alpha$ with $1<a<q$ do not have a zero Fourier coefficient $C(\vec{0})$, then for a simple $q$ the sum of the function values at the nodes of the corresponding parallelepipedal grid will be zero.
Keywords: classes of functions, quadrature formulas, Dirichlet series, zeta function of the monoid of natural numbers.
Funding agency Grant number
Russian Foundation for Basic Research 19-41-710004_р_а
The reported study was funded by RFBR, project number 19-41-710004_r_a.
Received: 04.12.2018
Accepted: 10.04.2019
Document Type: Article
UDC: 511.3
Language: Russian
Citation: N. N. Dobrovol'skii, N. M. Dobrovol'skii, I. Yu. Rebrova, A. V. Rodionov, “Monoids of natural numbers in the numerical-theoretical method in the approximate analysis”, Chebyshevskii Sb., 20:1 (2019), 164–179
Citation in format AMSBIB
\Bibitem{DobDobReb19}
\by N.~N.~Dobrovol'skii, N.~M.~Dobrovol'skii, I.~Yu.~Rebrova, A.~V.~Rodionov
\paper Monoids of natural numbers in the numerical-theoretical method in the approximate analysis
\jour Chebyshevskii Sb.
\yr 2019
\vol 20
\issue 1
\pages 164--179
\mathnet{http://mi.mathnet.ru/cheb724}
\crossref{https://doi.org/10.22405/2226-8383-2018-20-1-164-179}
Linking options:
  • https://www.mathnet.ru/eng/cheb724
  • https://www.mathnet.ru/eng/cheb/v20/i1/p164
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:185
    Full-text PDF :53
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024