Abstract:
We present A. V. Malyshev's approach to Minkowski's conjecture (in Davis's amendment) concerning the critical determinant of the region |x|p+|y|p<1 for p>1 and Malyshev's method. In the sequel of this article we use these approach and method to obtain the main result.
Bibliography: 21 titles.
Citation:
N. M. Glazunov, “On A. V. Malyshev's approach to Minkowski's conjecture concerning the critical determinant of the region |x|p+|y|p<1 for p>1”, Chebyshevskii Sb., 17:4 (2016), 185–193
\Bibitem{Gla16}
\by N.~M.~Glazunov
\paper On A.\,V.~Malyshev's approach to Minkowski's conjecture concerning the critical determinant of the region $|x|^p + |y|^p < 1$ for $p > 1$
\jour Chebyshevskii Sb.
\yr 2016
\vol 17
\issue 4
\pages 185--193
\mathnet{http://mi.mathnet.ru/cheb526}
\crossref{https://doi.org/10.22405/2226-8383-2016-17-4-185-193}
\elib{https://elibrary.ru/item.asp?id=27708216}