Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2016, Volume 17, Issue 4, Pages 180–184
DOI: https://doi.org/10.22405/2226-8383-2016-17-4-180-184
(Mi cheb525)
 

Problem of Nesterenko and method of Bernik

N. V. Budarinaa, H. O'Donnellb

a Khabarovsk Division of Institute for Applied Mathematics
b Dublin Institute of Technology
References:
Abstract: In this article we prove that, if integer polynomial $P$ satisfies $|P(\omega)|_p<H^{-w}$, then for $w>2n-2$ and sufficiently large $H$ the root $\gamma$ belongs to the field of $p$-adic numbers.
Bibliography: 16 titles.
Keywords: integer polynomials, discriminants of polynomials.
Received: 28.11.2016
Accepted: 12.12.2016
Bibliographic databases:
Document Type: Article
UDC: 511.42
Language: English
Citation: N. V. Budarina, H. O'Donnell, “Problem of Nesterenko and method of Bernik”, Chebyshevskii Sb., 17:4 (2016), 180–184
Citation in format AMSBIB
\Bibitem{BudOdo16}
\by N.~V.~Budarina, H.~O'Donnell
\paper Problem of Nesterenko and method of Bernik
\jour Chebyshevskii Sb.
\yr 2016
\vol 17
\issue 4
\pages 180--184
\mathnet{http://mi.mathnet.ru/cheb525}
\crossref{https://doi.org/10.22405/2226-8383-2016-17-4-180-184}
\elib{https://elibrary.ru/item.asp?id=27708215}
Linking options:
  • https://www.mathnet.ru/eng/cheb525
  • https://www.mathnet.ru/eng/cheb/v17/i4/p180
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024