Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2016, Volume 17, Issue 3, Pages 106–124 (Mi cheb500)  

This article is cited in 8 scientific papers (total in 8 papers)

On number of zeros of the Riemann zeta function that lie in «almost all» very short intervals of neighborhood of the critical line

Do Duc Tam

National Research University "Belgorod State University"
Full-text PDF (607 kB) Citations (8)
References:
Abstract: Proof (or disproof) of the Riemann hypothesis is the central problem of analytic number theory. By now it has not been solved.
In 1985 Karatsuba proved that for any $ 0 <\varepsilon <0,001 $, $ 0,5 <\sigma \leq 1 $, $ T> T_0 (\varepsilon)> 0 $ and $ H = T ^ { 27/82 + \varepsilon} $ in the rectangle with vertices $ \sigma + iT $, $ \sigma + i (T + H) $, $ 1 + i (T + H) $, $ 1 + iT $ contains no more than $ cH / (\sigma-0,5) $ zeros of $ \zeta (s) $. Thereby A.A. Karatsuba significantly strengthened the classical theorem J. Littlewood's.
Decrease in magnitude of $H$ for individual rectangle has not been obtained. However, by solving this problem «on average», in 1989 L.V. Kiseleva proved that for «almost all» $ T $ in the interval $ [X, X + X ^ {11/12 + \varepsilon}] $, $ X> X_0 (\varepsilon) $ in rectangle with vertices $ \sigma + iT $, $ \sigma + i (T + X ^ \varepsilon) $, $ 1 + i (T + X ^ \varepsilon) $, $ 1 + iT $ contains no more than $ O (X ^ \varepsilon / (\sigma-0,5)) $ zeros of $ \zeta (s) $.
In this article, we obtain a result of this kind, but for «almost all » $ T $ in the interval $ [X, X + X ^ {7/8 + \varepsilon}] $.
Bibliography: 23 titles.
Keywords: zeta function, non-trivial zeros, critical line.
Received: 11.06.2016
Accepted: 13.09.2016
Bibliographic databases:
Document Type: Article
UDC: 511
Language: Russian
Citation: Do Duc Tam, “On number of zeros of the Riemann zeta function that lie in «almost all» very short intervals of neighborhood of the critical line”, Chebyshevskii Sb., 17:3 (2016), 106–124
Citation in format AMSBIB
\Bibitem{Do16}
\by Do~Duc~Tam
\paper On number of zeros of the Riemann zeta function that lie in <<almost all>> very short intervals of neighborhood of the critical line
\jour Chebyshevskii Sb.
\yr 2016
\vol 17
\issue 3
\pages 106--124
\mathnet{http://mi.mathnet.ru/cheb500}
\elib{https://elibrary.ru/item.asp?id=27452085}
Linking options:
  • https://www.mathnet.ru/eng/cheb500
  • https://www.mathnet.ru/eng/cheb/v17/i3/p106
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:216
    Full-text PDF :61
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024