Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2016, Volume 17, Issue 3, Pages 72–105 (Mi cheb499)  

This article is cited in 13 scientific papers (total in 13 papers)

On hyperbolic Hurwitz zeta function

N. M. Dobrovolskya, N. N. Dobrovolskya, V. N. Sobolevab, D. K. Sobolevb, L. P. Dobrovol'skayac, O. E. Bocharovac

a Tula State Pedagogical University
b Moscow State Pedagogical University
c Institute of Economics and Management
References:
Abstract: The paper deals with a new object of study — hyperbolic Hurwitz zeta function, which is given in the right $\alpha$-semiplane $ \alpha = \sigma + it $, $ \sigma> 1 $ by the equality
$$ \zeta_H(\alpha; d, b) = \sum_{m \in \mathbb Z} \left(\, \overline{dm + b} \, \right)^{-\alpha}, $$
where $ d \neq0 $ and $ b $ — any real number.
Hyperbolic Hurwitz zeta function $ \zeta_H (\alpha; d, b) $, when $ \left\| \frac {b} {d} \right\|> 0 $ coincides with the hyperbolic zeta function of shifted one-dimensional lattice $ \zeta_H (\Lambda (d, b) | \alpha) $. The importance of this class of one-dimensional lattices is due to the fact that each Cartesian lattice is represented as a union of a finite number of Cartesian products of one-dimensional shifted lattices of the form $ \Lambda (d, b) = d \mathbb{Z} + b $.
Cartesian products of one-dimensional shifted lattices are in substance shifted diagonal lattices, for which in this paper the simplest form of a functional equation for the hyperbolic zeta function of such lattices is given.
The connection of the hyperbolic Hurwitz zeta function with the Hurwitz zeta function $ \zeta^* (\alpha; b)$ periodized by parameter $b$ and with the ordinary Hurwitz zeta function $ \zeta (\alpha; b) $ is studied.
New integral representations for these zeta functions and an analytic continuation to the left of the line $ \alpha = 1 + it $ are obtained.
All considered hyperbolic zeta functions of lattices form an important class of Dirichlet series directly related to the development of the number-theoretical method in approximate analysis. For the study of such series the use of Abel's theorem is efficient, which gives an integral representation through improper integrals. Integration by parts of these improper integrals leads to improper integrals with Bernoulli polynomials, which are also studied in this paper.
Bibliography: 34 titles.
Keywords: Hurwitz zeta function, periodised Hurwitz zeta function, Hurwitz zeta function of the second kind, hyperbolic Hurwitz zeta function, lattice, hyperbolic zeta function of lattice, zeta function of lattice, Bernoulli polynomials, Hankel contour.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-01540_а
15-41-03263_р_центр_а
Received: 02.05.2016
Accepted: 12.09.2016
Bibliographic databases:
Document Type: Article
UDC: 511.9
Language: Russian
Citation: N. M. Dobrovolsky, N. N. Dobrovolsky, V. N. Soboleva, D. K. Sobolev, L. P. Dobrovol'skaya, O. E. Bocharova, “On hyperbolic Hurwitz zeta function”, Chebyshevskii Sb., 17:3 (2016), 72–105
Citation in format AMSBIB
\Bibitem{DobDobSob16}
\by N.~M.~Dobrovolsky, N.~N.~Dobrovolsky, V.~N.~Soboleva, D.~K.~Sobolev, L.~P.~Dobrovol'skaya, O.~E.~Bocharova
\paper On hyperbolic Hurwitz zeta function
\jour Chebyshevskii Sb.
\yr 2016
\vol 17
\issue 3
\pages 72--105
\mathnet{http://mi.mathnet.ru/cheb499}
\elib{https://elibrary.ru/item.asp?id=27452084}
Linking options:
  • https://www.mathnet.ru/eng/cheb499
  • https://www.mathnet.ru/eng/cheb/v17/i3/p72
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:362
    Full-text PDF :96
    References:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024