Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2023, Volume 24, Issue 5, Pages 237–243
DOI: https://doi.org/10.22405/2226-8383-2023-24-5-237-243
(Mi cheb1387)
 

BRIEF MESSAGES

Transcendence of certain $2$-adic numbers

V. G. Chirskiiab

a Russian Presidential Academy of National Economy and Public Administration (Moscow)
b Lomonosov Moscow State University (Moscow)
References:
Abstract: We prove here that at least one of the two 2-adic numbers which are the values at $z=1$ of the sums in $ \mathbb{\mathrm{Q}}_2 $ of the series
$$ f_{0}(\lambda)=\sum_{n=0}^\infty (\lambda)_{n}\lambda^{n}, f_{1}(\lambda)=\sum_{n=0}^\infty (\lambda +1)_{n}\lambda^{n},$$
where $ \lambda $ is a certain polyadic Liouville number. The series considered converge in any field $ \mathbb{\mathrm{Q}}_p $ .We deal here with $ \mathbb{\mathrm{Q}}_2 $. The symbol $(\gamma)_{n}$ denotes Pochhammer symbol, i.e. $(\gamma)_{0}=1$ , and for $n\geq 1$ we have$ (\gamma)_{n}=\gamma(\gamma+1)...(\gamma+n-1)$. The values of these series were also calculated at polyadic Liouville number. The canonic expansion of a polyadic number $\lambda$ is of the form
$$ \lambda= \sum_{n=0}^\infty a_{n} n!, a_{n}\in\mathbb{\mathrm{Z}}, 0\leq a_{n}\leq n.$$
This series converges in any field of $p-$ adic numbers $ \mathbb{\mathrm{Q}}_p $ . We call a polyadic number $\lambda$ a polyadic Liouville number, if for any $n$ and $P$ there exists a positive integer $A$ such that for all primes $p$ ,satisfying $p\leq P$ the inequality
$$\left|\lambda -A \right|_{p}<|A|^{-n}$$
holds. It was proved earlier that the Liouville polyadic number is transcendental in any field $\mathbb{\mathrm{Q}}_p.$ In other words,the Liouville polyadic number is globally transcendental. It allowed to prove using some equality that there exists an infinite set of $p-$adic fields $ \mathbb{\mathrm{Q}}_p $ where at least one of the numbers $f_{0}(z),f_{1}(z).$ Here we prove the transcendence of values in the field $ \mathbb{\mathrm{Q}}_2 $.
Keywords: transcendence, polyadic number, polyadic Liouville number,.
Funding agency Grant number
Lomonosov Moscow State University
Received: 15.10.2023
Accepted: 21.12.2023
Document Type: Article
UDC: 511.36
Language: Russian
Citation: V. G. Chirskii, “Transcendence of certain $2$-adic numbers”, Chebyshevskii Sb., 24:5 (2023), 237–243
Citation in format AMSBIB
\Bibitem{Chi23}
\by V.~G.~Chirskii
\paper Transcendence of certain $2$-adic numbers
\jour Chebyshevskii Sb.
\yr 2023
\vol 24
\issue 5
\pages 237--243
\mathnet{http://mi.mathnet.ru/cheb1387}
\crossref{https://doi.org/10.22405/2226-8383-2023-24-5-237-243}
Linking options:
  • https://www.mathnet.ru/eng/cheb1387
  • https://www.mathnet.ru/eng/cheb/v24/i5/p237
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025