|
BRIEF MESSAGES
Kolmogorov's type inequalities in Bergman space $B_2$ and some of its applications
D. K. Tukhliev Khujand State University (Khujand, Tajikistan)
Abstract:
Let $\mathbb{N}$ be the set of natural numbers, $\mathbb{Z_{+}}$ be the set of non-negative integers, $\mathbb{C}$ be the set of complex numbers, $A(U)$ be the set of analytic functions in the unit circle $U:=\left\{z\in \mathbb{C}:|z|<1\right\}$, $B_2$ – be the Bergman spaces of functions $f\in A(U)$, endowed with a finite norm $$\|f\|_2:=\|f\|_{B_2}=\left(\frac{1}{\pi}\displaystyle\iint_{(U)}|f(z)|^2d\sigma\right)^{1/2}.$$ For $f\in A(U)$, we denote the usual derivative of order $m\in \mathbb{N}$ by $f^{(m)}(z)$ and introduce a class of functions $$B^{(m)}_2:=\left\{f\in B_2:\|f^{(m)}\|_2<\infty\right\}.$$ Let $E_{n-1}(f)_2$ be the magnitude of the best approximation of function $f\in B_2$ by complex algebraic polynomials of degree $\leq n-1.$ In this paper, a number of exact inequalities are found between the value of the best approximation of intermediate derivatives $E_{n-\nu-1}(f^{(\nu)})_2$ $(\nu=1,2,\cdots,m-1; m\geq2)$ and the best approximation $E_{n-m-1}(f^{(m)})_2$ of the highest derivative $f^{(m)}.$ Let $W^{(m)}_2:=W^{(m)}_2(U) \hspace{1mm} (m\in \mathbb{N})$ be a class of functions $f\in B^{(m)}_2$ for which $\|f^{(m)}\|_2\leq 1$. In this paper is proved that for any $n,m\in \mathbb{N}, \nu\in\mathbb{Z_+}, n>m\geq\nu$, the equality of takes place $$E_{n-\nu-1}(W^{(m)}_2)_2=\sup\{E_{n-\nu-1}(f^{(\nu)})_2: f\in W^{(m)}_2\}= \frac{\alpha_{n,\nu}}{\alpha_{n,m}}\cdot\sqrt{\frac{n-m+1}{n-\nu+1}},$$ and also, in the space $B_2$ for functions $f\in B^{(m)}_2$ for all $1\leq\nu\leq m-1, m\geq2$, an exact inequality of the Kolmogorov type $$ E_{n-\nu-1}(f^{(\nu)})_2\leq A_{m,\nu}(n)(E_{n-1}(f)_2)^{1-\nu/m}\cdot(E_{n-m-1}(f^{(m)})_2)^{\nu/m},$$ is found, where the constant $A_{m,\nu}(n)$ is explicitly written out. Some applications of the resulting inequality are given.
Keywords:
Bergman space, exact inequalities, mean-square approximations, best polynomial approximation, extremal problems, Kolmogorov type inequality.
Received: 27.07.2023 Accepted: 21.12.2023
Citation:
D. K. Tukhliev, “Kolmogorov's type inequalities in Bergman space $B_2$ and some of its applications”, Chebyshevskii Sb., 24:5 (2023), 228–236
Linking options:
https://www.mathnet.ru/eng/cheb1386 https://www.mathnet.ru/eng/cheb/v24/i5/p228
|
|