Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2023, Volume 24, Issue 5, Pages 228–236
DOI: https://doi.org/10.22405/2226-8383-2023-24-5-228-236
(Mi cheb1386)
 

BRIEF MESSAGES

Kolmogorov's type inequalities in Bergman space $B_2$ and some of its applications

D. K. Tukhliev

Khujand State University (Khujand, Tajikistan)
References:
Abstract: Let $\mathbb{N}$ be the set of natural numbers, $\mathbb{Z_{+}}$ be the set of non-negative integers, $\mathbb{C}$ be the set of complex numbers, $A(U)$ be the set of analytic functions in the unit circle
$U:=\left\{z\in \mathbb{C}:|z|<1\right\}$, $B_2$ – be the Bergman spaces of functions $f\in A(U)$, endowed with a finite norm
$$\|f\|_2:=\|f\|_{B_2}=\left(\frac{1}{\pi}\displaystyle\iint_{(U)}|f(z)|^2d\sigma\right)^{1/2}.$$
For $f\in A(U)$, we denote the usual derivative of order $m\in \mathbb{N}$ by $f^{(m)}(z)$ and introduce a class of functions
$$B^{(m)}_2:=\left\{f\in B_2:\|f^{(m)}\|_2<\infty\right\}.$$
Let $E_{n-1}(f)_2$ be the magnitude of the best approximation of function $f\in B_2$ by complex algebraic polynomials of degree $\leq n-1.$ In this paper, a number of exact inequalities are found between the value of the best approximation of intermediate derivatives $E_{n-\nu-1}(f^{(\nu)})_2$ $(\nu=1,2,\cdots,m-1; m\geq2)$ and the best approximation $E_{n-m-1}(f^{(m)})_2$ of the highest derivative $f^{(m)}.$ Let $W^{(m)}_2:=W^{(m)}_2(U) \hspace{1mm} (m\in \mathbb{N})$ be a class of functions $f\in B^{(m)}_2$ for which $\|f^{(m)}\|_2\leq 1$. In this paper is proved that for any $n,m\in \mathbb{N}, \nu\in\mathbb{Z_+}, n>m\geq\nu$, the equality of takes place
$$E_{n-\nu-1}(W^{(m)}_2)_2=\sup\{E_{n-\nu-1}(f^{(\nu)})_2: f\in W^{(m)}_2\}= \frac{\alpha_{n,\nu}}{\alpha_{n,m}}\cdot\sqrt{\frac{n-m+1}{n-\nu+1}},$$
and also, in the space $B_2$ for functions $f\in B^{(m)}_2$ for all $1\leq\nu\leq m-1, m\geq2$, an exact inequality of the Kolmogorov type
$$ E_{n-\nu-1}(f^{(\nu)})_2\leq A_{m,\nu}(n)(E_{n-1}(f)_2)^{1-\nu/m}\cdot(E_{n-m-1}(f^{(m)})_2)^{\nu/m},$$
is found, where the constant $A_{m,\nu}(n)$ is explicitly written out. Some applications of the resulting inequality are given.
Keywords: Bergman space, exact inequalities, mean-square approximations, best polynomial approximation, extremal problems, Kolmogorov type inequality.
Received: 27.07.2023
Accepted: 21.12.2023
Document Type: Article
UDC: 517.5
Language: Russian
Citation: D. K. Tukhliev, “Kolmogorov's type inequalities in Bergman space $B_2$ and some of its applications”, Chebyshevskii Sb., 24:5 (2023), 228–236
Citation in format AMSBIB
\Bibitem{Tuk23}
\by D.~K.~Tukhliev
\paper Kolmogorov's type inequalities in Bergman space $B_2$ and some of its applications
\jour Chebyshevskii Sb.
\yr 2023
\vol 24
\issue 5
\pages 228--236
\mathnet{http://mi.mathnet.ru/cheb1386}
\crossref{https://doi.org/10.22405/2226-8383-2023-24-5-228-236}
Linking options:
  • https://www.mathnet.ru/eng/cheb1386
  • https://www.mathnet.ru/eng/cheb/v24/i5/p228
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025