Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2022, Volume 23, Issue 3, Pages 102–117
DOI: https://doi.org/10.22405/2226-8383-2022-23-3-102-117
(Mi cheb1199)
 

This article is cited in 3 scientific papers (total in 3 papers)

Monoid of products of zeta functions of monoids of natural numbers

N. N. Dobrovol'skiiab, M. N. Dobrovol'skiic, N. M. Dobrovol'skiia, I. B. Kozhukhovd, I. Yu. Rebrovaa

a Tula State Lev Tolstoy Pedagogical University (Tula)
b Tula State University (Tula)
c Geophysical centre of RAS (Moscow)
d NRU «Moscow Institute of Electronic Technology» (Moscow)
Full-text PDF (671 kB) Citations (3)
References:
Abstract: The paper studies algebraic structures arising with respect to the multiplication operation of two sets of natural numbers. The main objects of study are the monoid $\mathbb{MN}$ of monoids of natural numbers and the monoid $\mathbb{SN}$ of products of arbitrary subsets of a natural series. Also, the monoid will be $\mathbb{SN}^*=\mathbb{SN}\setminus\ptyset\$.
An important property of these monoids is the fact that the set of all idempotents in the monoid $\mathbb{SN}$ except for the zero element coincides with the set of idempotents of the monoid $\mathbb{SN}^*$ forms the monoid $\mathbb{MN}$.
The presence of such a fact allowed us to consider the order. With respect to the order of $A\le B$ and binary operations $\inf$, $\sup$ the monoid $\mathbb{MN}$ is an irregular, complete A-lattice.
The paper distinguishes the concepts of A-lattice as an object of general algebra and T-lattice as an object of number theory and geometry of numbers.
The paper defines the structure of a complete metric space with a non-Archimedean metric on the monoid $\mathbb{SN}$. This made it possible to prove a theorem on the convergence of a sequence of Dirichlet series over convergent sequences of natural numbers.
If we consider the product of two zeta functions of monoids of natural numbers, then it will be a zeta function of a monoid of natural numbers only when these monoids are mutually simple. In general, their product will be a Dirichlet series with natural coefficients over a monoid equal to the product of the monoids of the cofactors. This monoid generated by the zeta functions of the monoids of natural numbers is denoted by $\mathbb{MD}$. It is shown that the monoids $\mathbb{MN}$ and $\mathbb{MD}$ are non-isomorphic.
The paper defines two small categories $\mathcal{MN}$ and $\mathcal{SN}$ and studies some of their properties.
Keywords: a monoid of natural numbers, a lattice by a monoid of natural numbers, a metric space of subsets of a natural series, a zeta function of a monoid, a Dirichlet series, a small category of monoids of natural numbers.
Funding agency Grant number
Russian Science Foundation 22-21-00544
22-11-00052
The work was prepared under RSF grants No. 22-21-00544 and No. 22-11-00052.
Received: 18.07.2022
Accepted: 14.09.2022
Document Type: Article
UDC: 511.3
Language: Russian
Citation: N. N. Dobrovol'skii, M. N. Dobrovol'skii, N. M. Dobrovol'skii, I. B. Kozhukhov, I. Yu. Rebrova, “Monoid of products of zeta functions of monoids of natural numbers”, Chebyshevskii Sb., 23:3 (2022), 102–117
Citation in format AMSBIB
\Bibitem{DobDobDob22}
\by N.~N.~Dobrovol'skii, M.~N.~Dobrovol'skii, N.~M.~Dobrovol'skii, I.~B.~Kozhukhov, I.~Yu.~Rebrova
\paper Monoid of products of zeta functions of monoids of natural numbers
\jour Chebyshevskii Sb.
\yr 2022
\vol 23
\issue 3
\pages 102--117
\mathnet{http://mi.mathnet.ru/cheb1199}
\crossref{https://doi.org/10.22405/2226-8383-2022-23-3-102-117}
Linking options:
  • https://www.mathnet.ru/eng/cheb1199
  • https://www.mathnet.ru/eng/cheb/v23/i3/p102
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025