Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2021, Volume 22, Issue 2, Pages 334–346
DOI: https://doi.org/10.22405/2226-8383-2018-22-2-334-346
(Mi cheb1037)
 

This article is cited in 4 scientific papers (total in 4 papers)

Infinite linear and algebraic independence of values of $F$-series at polyadic Liouvillea points

E. Yu. Yudenkova

Moscow Pedagogical State University (Moscow)
Full-text PDF (681 kB) Citations (4)
References:
Abstract: This paper proves infinite linear and algebraic independence of the values of $F$-series at polyadic Liouville points using a modification of the generalised Siegel-Shidlovskii method. $F$-series have form $f_n = \sum_{n=0}^{\infty}a_n n! z^n$ whose coefficients $a_n$ satisfy some arithmetic properties. These series converge in the field $\mathbb{Q}_p$ of $p$-adic numbers and their algebraic extensions $\mathbb{K}_v$. Polyadic number is a series of the form $\sum_{n=0}^{\infty} a_nn!, a_n \in \mathbb{Z}$. Liouville number is a real number x with the property that, for every positive integer n, there exist infinitely many pairs of integers $(p, q)$ with $q > 1$ such that $0 < \left| x - \frac{p}{q} \right| < \frac{1}{q^n}. $ The polyadic Liouville number $\alpha$ has the property that for any numbers $P, D$ there exists an integer $|A|$ such that for all primes $p \leq P$ the inequality $|\alpha - A|_p < A^{-D}. $ Infinite linear (algebraic) independence means that for any nonzero linear form (any nonzero polynomial) there are infinitely many primes $p$ and valuations $v$ extending $p$-adic valuation to an algebraic number field $\mathbb{K}$ with the following property: the result of substitution in the considered linear form (polynomial) of the values of $ F $ — of series instead of variables is a nonzero element of the field.
Previously, only the existence of at least one prime number $p$ with the properties listed above was proved.
Keywords: Method by Siegel–Shidlovscii, $F$-series, polyadic Liouville numbers.
Document Type: Article
UDC: 511.3
Language: Russian
Citation: E. Yu. Yudenkova, “Infinite linear and algebraic independence of values of $F$-series at polyadic Liouvillea points”, Chebyshevskii Sb., 22:2 (2021), 334–346
Citation in format AMSBIB
\Bibitem{Yud21}
\by E.~Yu.~Yudenkova
\paper Infinite linear and algebraic independence of values of $F$-series at polyadic Liouvillea points
\jour Chebyshevskii Sb.
\yr 2021
\vol 22
\issue 2
\pages 334--346
\mathnet{http://mi.mathnet.ru/cheb1037}
\crossref{https://doi.org/10.22405/2226-8383-2018-22-2-334-346}
Linking options:
  • https://www.mathnet.ru/eng/cheb1037
  • https://www.mathnet.ru/eng/cheb/v22/i2/p334
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:117
    Full-text PDF :27
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024