Loading [MathJax]/jax/output/SVG/config.js
Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2009, Issue 1, Pages 25–38 (Mi at6)  

This article is cited in 12 scientific papers (total in 12 papers)

Deterministic Systems

On partial detectability of the nonlinear dynamic systems

V. I. Vorotnikova, Yu. G. Martyshenkob

a Ural State Technical University
b Nizhny Tagil Technological Institute (branch) of Ural State Technical University
References:
Abstract: Conditions were obtained under which the uniform stability (uniform asymptotic stability) in one part of the variables of the zero equilibrium position of the nonlinear nonstationary system of ordinary differential equations implies the uniform stability (uniform asymptotic stability) of this equilibrium position relative to another, larger part of variables. Conditions were also obtained under which the uniform stability (uniform asymptotic stability) in one part of variables of the “partial” (zero) equilibrium position of the nonlinear nonstationary system of ordinary differential equations implies the uniform stability (uniform asymptotic stability) of this equilibrium position. These conditions complement a number of the well-known results of the theory of partial stability and partial detectability of the nonlinear dynamic systems. Application of the results obtained to the problems of partial stabilization of the nonlinear control systems was considered.
Presented by the member of Editorial Board: L. B. Rapoport

Received: 04.06.2007
English version:
Automation and Remote Control, 2009, Volume 70, Issue 1, Pages 20–32
DOI: https://doi.org/10.1134/S0005117909010020
Bibliographic databases:
Document Type: Article
PACS: 02.30.Yy
Language: Russian
Citation: V. I. Vorotnikov, Yu. G. Martyshenko, “On partial detectability of the nonlinear dynamic systems”, Avtomat. i Telemekh., 2009, no. 1, 25–38; Autom. Remote Control, 70:1 (2009), 20–32
Citation in format AMSBIB
\Bibitem{VorMar09}
\by V.~I.~Vorotnikov, Yu.~G.~Martyshenko
\paper On partial detectability of the nonlinear dynamic systems
\jour Avtomat. i Telemekh.
\yr 2009
\issue 1
\pages 25--38
\mathnet{http://mi.mathnet.ru/at6}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2510670}
\zmath{https://zbmath.org/?q=an:1163.93383}
\transl
\jour Autom. Remote Control
\yr 2009
\vol 70
\issue 1
\pages 20--32
\crossref{https://doi.org/10.1134/S0005117909010020}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000263843600002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-59849099396}
Linking options:
  • https://www.mathnet.ru/eng/at6
  • https://www.mathnet.ru/eng/at/y2009/i1/p25
  • This publication is cited in the following 12 articles:
    1. V. I. Vorotnikov, Yu. G. Martyshenko, “Approach to the Stability Analysis of Partial Equilibrium States of Nonlinear Discrete Systems”, J. Comput. Syst. Sci. Int., 61:3 (2022), 348  crossref
    2. V. I. Vorotnikov, “On partial stability and detectability of functional differential systems with aftereffect”, Autom. Remote Control, 81:2 (2020), 199–210  mathnet  crossref  crossref  isi  elib
    3. V. I. Vorotnikov, Yu. G. Martyshenko, “On Problem of Partial Detectability for Nonlinear Discrete-Time Systems”, Mehatronika, avtomatizaciâ, upravlenie, 21:3 (2020), 136  crossref
    4. V. I. Vorotnikov, Yu. G. Martyshenko, “On the partial stability in probability of nonlinear stochastic systems”, Autom. Remote Control, 80:5 (2019), 856–866  mathnet  crossref  crossref  isi  elib
    5. V. I. Vorotnikov, “On Problem of Partial Stability for Functional Differential Systems with Holdover”, Mehatronika, avtomatizaciâ, upravlenie, 20:7 (2019), 398  crossref
    6. K. S. Lapin, “Higher-Order Derivatives of Lyapunov Functions and Partial Boundedness of Solutions with Partially Controllable Initial Conditions”, Math. Notes, 101:6 (2017), 1000–1008  mathnet  crossref  crossref  mathscinet  isi  elib
    7. Kao Y., Wang Ch., Zha F., Cao H., “Stability in Mean of Partial Variables for Stochastic Reaction-Diffusion Systems with Markovian Switching”, J. Frankl. Inst.-Eng. Appl. Math., 351:1 (2014), 500–512  crossref  mathscinet  zmath  isi
    8. Kao Y., Karimi H.R., “Stability in Mean of Partial Variables For Coupled Stochastic Reaction-Diffusion Systems on Networks: a Graph Approach”, Abstract Appl. Anal., 2014, 597502  crossref  mathscinet  isi  elib
    9. Vorotnikov V.I., Martyshenko Yu.G., Feofanova V.A., “K nelineinoi igrovoi zadache trekhosnoi pereorientatsii trekhrotornogo girostata”, Sistemy upravleniya i informatsionnye tekhnologii, 47:1 (2012), 19–23  mathscinet  elib
    10. V. I. Vorotnikov, Yu. G. Martyshenko, “On the nonlinear uniaxial reorientation problem for a three-rotor gyrostat in the game noise model”, Autom. Remote Control, 73:9 (2012), 1469–1480  mathnet  crossref  zmath  isi
    11. Vorotnikov V.I., Martyshenko Yu.G., “K zadache stabilizatsii zadannoi orientatsii asimmetrichnogo tverdogo tela”, Sistemy upravleniya i informatsionnye tekhnologii, 43:1 (2011), 56–60  mathscinet  elib
    12. Vorotnikov V.I., Martyshenko Yu.G., “K nelineinoi igrovoi zadache odnoosnoi pereorientatsii trekhrotornogo girostata”, Sistemy upravleniya i informatsionnye tekhnologii, 45:3 (2011), 59–63  mathscinet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
    Statistics & downloads:
    Abstract page:681
    Full-text PDF :233
    References:67
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025