Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2022, Volume 61, Number 1, Pages 77–92
DOI: https://doi.org/10.33048/alglog.2022.61.104
(Mi al2697)
 

This article is cited in 1 scientific paper (total in 1 paper)

Levi classes of quasivarieties of nilpotent groups of exponent $p^s$

V. V. Lodeishchikovaa, S. A. Shakhovab

a Altai State University, Barnaul
b Altai State University, Barnaul
Full-text PDF (237 kB) Citations (1)
References:
Abstract: The Levi class $L(\mathcal{M})$ generated by the class $\mathcal{M}$ of groups is the class of all groups in which the normal closure of every element belongs to $\mathcal{M}$. It is proved that there exists a set of quasivarieties $\mathcal{M}$ of cardinality continuum such that $L(\mathcal{M})=L(qH_{p^{s}})$, where $qH_{p^{s}}$ is the quasivariety generated by the group $H_{p^{s}}$, a free group of rank $2$ in the variety $\mathcal{R}^{p^{s}}$ of $\leq 2$-step nilpotent groups of exponent $p^{s}$ with commutator subgroup of exponent $p$, $p$ is a prime number, $p\neq 2$, $s$ is a natural number, $s\geq 2$, and $s>2$ for $p=3$.
Keywords: quasivariety, Levi class, nilpotent group.
Received: 21.01.2022
Revised: 07.06.2022
Bibliographic databases:
Document Type: Article
UDC: 512.54.01
Language: Russian
Citation: V. V. Lodeishchikova, S. A. Shakhova, “Levi classes of quasivarieties of nilpotent groups of exponent $p^s$”, Algebra Logika, 61:1 (2022), 77–92
Citation in format AMSBIB
\Bibitem{LodSha22}
\by V.~V.~Lodeishchikova, S.~A.~Shakhova
\paper Levi classes of quasivarieties of nilpotent groups of exponent $p^s$
\jour Algebra Logika
\yr 2022
\vol 61
\issue 1
\pages 77--92
\mathnet{http://mi.mathnet.ru/al2697}
\crossref{https://doi.org/10.33048/alglog.2022.61.104}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4471695}
Linking options:
  • https://www.mathnet.ru/eng/al2697
  • https://www.mathnet.ru/eng/al/v61/i1/p77
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024