Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2022, Volume 61, Number 1, Pages 42–76
DOI: https://doi.org/10.33048/alglog.2022.61.103
(Mi al2696)
 

This article is cited in 1 scientific paper (total in 1 paper)

Index sets for classes of positive preorders

B. S. Kalmurzaevab, N. A. Bazhenovc, M. A. Torebekovab

a Al-Farabi Kazakh National University
b Kazakh-British Technical University
c Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Full-text PDF (356 kB) Citations (1)
References:
Abstract: We study the complexity of index sets with respect to a universal computable numbering of the family of all positive preorders. Let $\leq_c$ be computable reducibility on positive preorders. For an arbitrary positive preorder $R$ such that the $R$-induced equivalence $\sim_R$ has infinitely many classes, the following results are obtained. The index set for preorders $P$ with $R\leq_c P$ is $\Sigma^0_3$-complete. A preorder $R$ is said to be self-full if the range of any computable function realizing the reduction $R\leq_c R$ intersects all $\sim_R$-classes. If $L$ is a non-self-full positive linear preorder, then the index set of preorders $P$ with $P\equiv_c L$ is $\Sigma^0_3$-complete. It is proved that the index set of self-full linear preorders is $\Pi^0_3$-complete.
Keywords: positive preorder, positive equivalence, positive linear preorder, computable reducibility, index set.
Received: 28.07.2021
Revised: 07.06.2022
Document Type: Article
UDC: 510.5
Language: Russian
Citation: B. S. Kalmurzaev, N. A. Bazhenov, M. A. Torebekova, “Index sets for classes of positive preorders”, Algebra Logika, 61:1 (2022), 42–76
Citation in format AMSBIB
\Bibitem{KalBazTor22}
\by B.~S.~Kalmurzaev, N.~A.~Bazhenov, M.~A.~Torebekova
\paper Index sets for classes of positive preorders
\jour Algebra Logika
\yr 2022
\vol 61
\issue 1
\pages 42--76
\mathnet{http://mi.mathnet.ru/al2696}
\crossref{https://doi.org/10.33048/alglog.2022.61.103}
Linking options:
  • https://www.mathnet.ru/eng/al2696
  • https://www.mathnet.ru/eng/al/v61/i1/p42
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:134
    Full-text PDF :48
    References:37
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024