Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2021, Volume 32, Issue 2, Pages 253–266
DOI: https://doi.org/10.12958/adm1879
(Mi adm820)
 

RESEARCH ARTICLE

Homotopy equivalence of normalized and unnormalized complexes, revisited

V. Lyubashenkoa, A. Matsuib

a Institute of Mathematics NASU, 3 Tereshchenkivska st., Kyiv, 01024, Ukraine
b Kyiv National Taras Shevchenko University, Faculty of Mechanics and Mathematics, 4-e Akademika Hlushkova Ave, Kyiv, 03127, Ukraine
References:
Abstract: We consider the unnormalized and normalized complexes of a simplicial or a cosimplicial object coming from the Dold–Kan correspondence for an idempotent complete additive category (kernels and cokernels are not required). The normalized complex is defined as the image of certain idempotent in the unnormalized complex. We prove that this idempotent is homotopic to identity via homotopy which is expressed via faces and degeneracies. Hence, the normalized and unnormalized complex are homotopy isomorphic to each other. We provide explicit formulae for the homotopy.
Keywords: idempotent, simplicial object; homotopy in chain complexes, Dold–Kan correspondence.
Received: 15.08.2021
Document Type: Article
MSC: 18G31, 18N50
Language: English
Citation: V. Lyubashenko, A. Matsui, “Homotopy equivalence of normalized and unnormalized complexes, revisited”, Algebra Discrete Math., 32:2 (2021), 253–266
Citation in format AMSBIB
\Bibitem{LyuMat21}
\by V.~Lyubashenko, A.~Matsui
\paper Homotopy equivalence of normalized and unnormalized complexes, revisited
\jour Algebra Discrete Math.
\yr 2021
\vol 32
\issue 2
\pages 253--266
\mathnet{http://mi.mathnet.ru/adm820}
\crossref{https://doi.org/10.12958/adm1879}
Linking options:
  • https://www.mathnet.ru/eng/adm820
  • https://www.mathnet.ru/eng/adm/v32/i2/p253
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:93
    Full-text PDF :69
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024