Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2021, Volume 32, Issue 2, Pages 267–279
DOI: https://doi.org/10.12958/adm1512
(Mi adm821)
 

RESEARCH ARTICLE

A study on dual square free modules

M. Medina-Bárcenasa, D. Keskin Tütüncüb, Y. Kuratomic

a Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Av. San Claudioy 18 Sur, Col.San Manuel, Ciudad Universitaria, 72570, Puebla, México
b Department of Mathematics, Hacettepe University, 06800, Beytepe, Ankara, Turkey
c Department of Mathematics, Faculty of Science, Yamaguchi University, Yamaguchi, Japan
References:
Abstract: Let $M$ be an $H$-supplemented coatomic module with FIEP. Then we prove that $M$ is dual square free if and only if every maximal submodule of $M$ is fully invariant. Let $M=\bigoplus_{i\in I} M_i$ be a direct sum, such that $M$ is coatomic. Then we prove that $M$ is dual square free if and only if each $M_i$ is dual square free for all $i\in I$ and, $M_i$ and $\bigoplus_{j\neq i}M_j$ are dual orthogonal. Finally we study the endomorphism rings of dual square free modules. Let $M$ be a quasi-projective module. If $\operatorname{End}_R(M)$ is right dual square free, then $M$ is dual square free. In addition, if $M$ is finitely generated, then $\operatorname{End}_R(M)$ is right dual square free whenever $M$ is dual square free. We give several examples illustrating our hypotheses.
Keywords: dual square free module, endoregular module, (finite) internal exchange property.
Received: 11.12.2019
Revised: 04.02.2021
Document Type: Article
MSC: 16D40, 16D70
Language: English
Citation: M. Medina-Bárcenas, D. Keskin Tütüncü, Y. Kuratomi, “A study on dual square free modules”, Algebra Discrete Math., 32:2 (2021), 267–279
Citation in format AMSBIB
\Bibitem{MedTutKur21}
\by M.~Medina-B\'arcenas, D.~Keskin~T\"ut\"unc\"u, Y.~Kuratomi
\paper A study on dual square free modules
\jour Algebra Discrete Math.
\yr 2021
\vol 32
\issue 2
\pages 267--279
\mathnet{http://mi.mathnet.ru/adm821}
\crossref{https://doi.org/10.12958/adm1512}
Linking options:
  • https://www.mathnet.ru/eng/adm821
  • https://www.mathnet.ru/eng/adm/v32/i2/p267
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:76
    Full-text PDF :33
    References:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024