|
RESEARCH ARTICLE
On (co)pure Baer injective modules
M. F. Hamid Department of Production Engineering and Metallurgy, University of Technology, Baghdad, Iraq
Abstract:
For a given class of $R$-modules $\mathcal{Q}$, a module $M$ is called $\mathcal{Q}$-copure Baer injective if any map from a $\mathcal{Q}$-copure left ideal of $R$ into $M$ can be extended to a map from $R$ into $M$. Depending on the class $\mathcal{Q}$, this concept is both a dualization and a generalization of pure Baer injectivity. We show that every module can be embedded as $\mathcal{Q}$-copure submodule of a $\mathcal{Q}$-copure Baer injective module. Certain types of rings are characterized using properties of $\mathcal{Q}$-copure Baer injective modules. For example a ring $R$ is $\mathcal{Q}$-coregular if and only if every $\mathcal{Q}$-copure Baer injective $R$-module is injective.
Keywords:
$\mathcal{Q}$-copure submodule, $\mathcal{Q}$-copure Baer injective module, pure Baer injective module.
Received: 30.06.2018
Citation:
M. F. Hamid, “On (co)pure Baer injective modules”, Algebra Discrete Math., 31:2 (2021), 219–226
Linking options:
https://www.mathnet.ru/eng/adm797 https://www.mathnet.ru/eng/adm/v31/i2/p219
|
Statistics & downloads: |
Abstract page: | 37 | Full-text PDF : | 24 | References: | 23 |
|