Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2021, Volume 31, Issue 2, Pages 219–226
DOI: https://doi.org/10.12958/adm1209
(Mi adm797)
 

RESEARCH ARTICLE

On (co)pure Baer injective modules

M. F. Hamid

Department of Production Engineering and Metallurgy, University of Technology, Baghdad, Iraq
References:
Abstract: For a given class of $R$-modules $\mathcal{Q}$, a module $M$ is called $\mathcal{Q}$-copure Baer injective if any map from a $\mathcal{Q}$-copure left ideal of $R$ into $M$ can be extended to a map from $R$ into $M$. Depending on the class $\mathcal{Q}$, this concept is both a dualization and a generalization of pure Baer injectivity. We show that every module can be embedded as $\mathcal{Q}$-copure submodule of a $\mathcal{Q}$-copure Baer injective module. Certain types of rings are characterized using properties of $\mathcal{Q}$-copure Baer injective modules. For example a ring $R$ is $\mathcal{Q}$-coregular if and only if every $\mathcal{Q}$-copure Baer injective $R$-module is injective.
Keywords: $\mathcal{Q}$-copure submodule, $\mathcal{Q}$-copure Baer injective module, pure Baer injective module.
Received: 30.06.2018
Document Type: Article
MSC: 16D50
Language: English
Citation: M. F. Hamid, “On (co)pure Baer injective modules”, Algebra Discrete Math., 31:2 (2021), 219–226
Citation in format AMSBIB
\Bibitem{Ham21}
\by M.~F.~Hamid
\paper On (co)pure Baer injective modules
\jour Algebra Discrete Math.
\yr 2021
\vol 31
\issue 2
\pages 219--226
\mathnet{http://mi.mathnet.ru/adm797}
\crossref{https://doi.org/10.12958/adm1209}
Linking options:
  • https://www.mathnet.ru/eng/adm797
  • https://www.mathnet.ru/eng/adm/v31/i2/p219
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:37
    Full-text PDF :24
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024