|
This article is cited in 2 scientific papers (total in 2 papers)
RESEARCH ARTICLE
Infinite transitivity on the Calogero–Moser space $\mathcal{C}_2$
J. Kestena, S. Mathersb, Z. Normatovc a Department of Mathematics, Rice University, Houston, TX, 77005, USA
b Department of Mathematics, Princeton University, Princeton, NJ, 08544, USA
c V.~I.~Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, Tashkent, 100170, Uzbekistan
Abstract:
We prove a particular case of the conjecture of Berest–Eshmatov–Eshmatov by showing that the group of unimodular automorphisms of $\mathbb{C}[ x,y]$ acts in an infinitely-transitive way on the Calogero-Moser space $\mathcal{C}_2$.
Keywords:
Calogero–Moser space, infinite transitivity.
Received: 26.06.2020 Revised: 05.12.2020
Citation:
J. Kesten, S. Mathers, Z. Normatov, “Infinite transitivity on the Calogero–Moser space $\mathcal{C}_2$”, Algebra Discrete Math., 31:2 (2021), 227–250
Linking options:
https://www.mathnet.ru/eng/adm798 https://www.mathnet.ru/eng/adm/v31/i2/p227
|
Statistics & downloads: |
Abstract page: | 37 | Full-text PDF : | 34 | References: | 19 |
|