Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2021, Volume 31, Issue 1, Pages 61–70
DOI: https://doi.org/10.12958/adm1482
(Mi adm788)
 

RESEARCH ARTICLE

Mappings preserving sum of products $a\circ b+ba^{*}$ on factor von Neumann algebras

J. C. Ferreira, M. G. B. Marietto

Center for Mathematics, Computation and Cognition, Federal University of ABC, Avenida dos Estados, 5001, 09210-580, Santo André, Brazil
References:
Abstract: Let $\mathcal{A}$ and $\mathcal{B}$ be two factor von Neumann algebras. In this paper, we proved that a bijective mapping $\Phi \colon\mathcal{A}\to\mathcal{B}$ satisfies $\Phi (a\circ b+ba^{*})=\Phi (a)\circ \Phi (b)+\Phi (b)\Phi (a)^{*}$ (where $\circ $ is the special Jordan product on $\mathcal{A}$ and $\mathcal{B},$ respectively), for all elements $a,b\in \mathcal{A}$, if and only if $\Phi $ is a $\ast $-ring isomorphism. In particular, if the von Neumann algebras $\mathcal{A}$ and $\mathcal{B}$ are type I factors, then $\Phi $ is a unitary isomorphism or a conjugate unitary isomorphism.
Keywords: $\ast$-ring isomorphisms, factor von Neumann algebras.
Received: 21.10.2019
Document Type: Article
MSC: 47B48, 46L10
Language: English
Citation: J. C. Ferreira, M. G. B. Marietto, “Mappings preserving sum of products $a\circ b+ba^{*}$ on factor von Neumann algebras”, Algebra Discrete Math., 31:1 (2021), 61–70
Citation in format AMSBIB
\Bibitem{FerMar21}
\by J.~C.~Ferreira, M.~G.~B.~Marietto
\paper Mappings preserving sum of products $a\circ b+ba^{*}$ on factor von Neumann algebras
\jour Algebra Discrete Math.
\yr 2021
\vol 31
\issue 1
\pages 61--70
\mathnet{http://mi.mathnet.ru/adm788}
\crossref{https://doi.org/10.12958/adm1482}
Linking options:
  • https://www.mathnet.ru/eng/adm788
  • https://www.mathnet.ru/eng/adm/v31/i1/p61
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:41
    Full-text PDF :26
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024