|
RESEARCH ARTICLE
Mappings preserving sum of products $a\circ b+ba^{*}$ on factor von Neumann algebras
J. C. Ferreira, M. G. B. Marietto Center for Mathematics, Computation and Cognition, Federal University of ABC, Avenida dos Estados, 5001, 09210-580, Santo André, Brazil
Abstract:
Let $\mathcal{A}$ and $\mathcal{B}$ be two factor von Neumann algebras. In this paper, we proved that a bijective mapping $\Phi \colon\mathcal{A}\to\mathcal{B}$ satisfies $\Phi (a\circ b+ba^{*})=\Phi (a)\circ \Phi (b)+\Phi (b)\Phi (a)^{*}$ (where $\circ $ is the special Jordan product on $\mathcal{A}$ and $\mathcal{B},$ respectively), for all elements $a,b\in \mathcal{A}$, if and only if $\Phi $ is a $\ast $-ring isomorphism. In particular, if the von Neumann algebras $\mathcal{A}$ and $\mathcal{B}$ are type I factors, then $\Phi $ is a unitary isomorphism or a conjugate unitary isomorphism.
Keywords:
$\ast$-ring isomorphisms, factor von Neumann algebras.
Received: 21.10.2019
Citation:
J. C. Ferreira, M. G. B. Marietto, “Mappings preserving sum of products $a\circ b+ba^{*}$ on factor von Neumann algebras”, Algebra Discrete Math., 31:1 (2021), 61–70
Linking options:
https://www.mathnet.ru/eng/adm788 https://www.mathnet.ru/eng/adm/v31/i1/p61
|
Statistics & downloads: |
Abstract page: | 41 | Full-text PDF : | 26 | References: | 19 |
|