Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2021, Volume 31, Issue 1, Pages 37–60
DOI: https://doi.org/10.12958/adm1288
(Mi adm787)
 

RESEARCH ARTICLE

Morita equivalence of semirings with local units

M. Dasa, S. Guptab, S. K. Sardara

a Department of Mathematics, Jadavpur University, Kolkata, India
b Department of Mathematics, Vidyasagar College for Women, Kolkata, India
References:
Abstract: In this paper we study some necessary and sufficient conditions for two semirings with local units to be Morita equivalent. Then we obtain some properties which remain invariant under Morita equivalence.
Keywords: Morita equivalence, Morita context, Morita invariant, semiring, semimodule.
Funding agency Grant number
Council of Scientific and Industrial Research
The first author is grateful to CSIR, Govt. of India, for providing research support.
Received: 16.11.2018
Revised: 02.09.2019
Document Type: Article
MSC: 16Y60, 16Y99
Language: English
Citation: M. Das, S. Gupta, S. K. Sardar, “Morita equivalence of semirings with local units”, Algebra Discrete Math., 31:1 (2021), 37–60
Citation in format AMSBIB
\Bibitem{DasGupSar21}
\by M.~Das, S.~Gupta, S.~K.~Sardar
\paper Morita equivalence of semirings with local units
\jour Algebra Discrete Math.
\yr 2021
\vol 31
\issue 1
\pages 37--60
\mathnet{http://mi.mathnet.ru/adm787}
\crossref{https://doi.org/10.12958/adm1288}
Linking options:
  • https://www.mathnet.ru/eng/adm787
  • https://www.mathnet.ru/eng/adm/v31/i1/p37
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:44
    Full-text PDF :41
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024