|
RESEARCH ARTICLE
Norm of Gaussian integers in arithmetical progressions and narrow sectors
S. Varbanetsa, Ya. Vorobyovb a Odessa I.I. Mechnikov National University, Dvoryanskaya str. 2, 65026 Odessa, Ukraine
b Izmail State Humanities University, Izmail, Repina str. 12, 68610 Izmail, Ukraine
Abstract:
We proved the equidistribution of the Gaussian integer numbers in narrow sectors of the circle of radius $x^{\frac{1}{2}}$, $x\to\infty$, with the norms belonging to arithmetic progression $N(\alpha)\equiv\ell\pmod{q}$ with the common difference of an arithmetic progression $q$, $q\ll{x}^{\frac{2}{3}-\varepsilon}$.
Keywords:
Gaussian integers, norm groups, Hecke $Z$-function, functional equation.
Received: 20.01.2020
Citation:
S. Varbanets, Ya. Vorobyov, “Norm of Gaussian integers in arithmetical progressions and narrow sectors”, Algebra Discrete Math., 29:2 (2020), 259–270
Linking options:
https://www.mathnet.ru/eng/adm757 https://www.mathnet.ru/eng/adm/v29/i2/p259
|
|