Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2020, Volume 29, Issue 2, Pages 249–258
DOI: https://doi.org/10.12958/adm493
(Mi adm756)
 

RESEARCH ARTICLE

On a common generalization of symmetric rings and quasi duo rings

T. Subedi, D. Roy

Department of Mathematics, National Institute of Technology Meghalaya, India
References:
Abstract: Let $J(R)$ denote the Jacobson radical of a ring $R$. We call a ring $R$ as $J$-symmetric if for any $a,b, c\in R$, $abc=0$ implies $bac\in J(R)$. It turns out that $J$-symmetric rings are a common generalization of left (right) quasi-duo rings and generalized weakly symmetric rings. Various properties of these rings are established and some results on exchange rings and the regularity of left $\mathrm{SF}$-rings are generalized.
Keywords: symmetric ring, Jacobson radical, $J$-symmetric ring.
Received: 24.06.2017
Bibliographic databases:
Document Type: Article
MSC: 13C99, 16D80, 16U80
Language: English
Citation: T. Subedi, D. Roy, “On a common generalization of symmetric rings and quasi duo rings”, Algebra Discrete Math., 29:2 (2020), 249–258
Citation in format AMSBIB
\Bibitem{SubRoy20}
\by T.~Subedi, D.~Roy
\paper On a common generalization of symmetric rings and quasi duo rings
\jour Algebra Discrete Math.
\yr 2020
\vol 29
\issue 2
\pages 249--258
\mathnet{http://mi.mathnet.ru/adm756}
\crossref{https://doi.org/10.12958/adm493}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000548734400010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087566656}
Linking options:
  • https://www.mathnet.ru/eng/adm756
  • https://www.mathnet.ru/eng/adm/v29/i2/p249
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:85
    Full-text PDF :117
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024