Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2019, Volume 27, Issue 1, Pages 37–49 (Mi adm690)  

RESEARCH ARTICLE

The lattice of quasivarietes of modules over a Dedekind ring

Přemysl Jedličkaa, Katarzyna Matczakb, Anna Mućkac

a Department o Mathematics, Faculty of Engineering, Czech University of Life Sciences, 165 21 Prague, Czech Republic
b Faculty of Civil Engineering, Mechanics and Petrochemistry in Płock, Warsaw University of Technology, 09-400 Płock, Poland
c Faculty of Mathematics and Information Sciences, Warsaw University of Technology, 00-661 Warsaw, Poland
References:
Abstract: In 1995 D. V. Belkin described the lattice of quasivarieties of modules over principal ideal domains [1]. The following paper provides a description of the lattice of subquasivarieties of the variety of modules over a given Dedekind ring. It also shows which subvarieties of these modules are deductive (a variety is deductive if every subquasivariety is a variety).
Keywords: quasivarieties, lattices, modules, Dedekind rings.
Funding agency Grant number
European Regional Development Fund 7AMB13PL013
8829/R13/R14
The joint research within the framework of the Polish–Czech cooperation grant no. 7AMB13PL013 and no. 8829/R13/R14.
Received: 22.06.2017
Revised: 12.09.2017
Document Type: Article
Language: English
Citation: Přemysl Jedlička, Katarzyna Matczak, Anna Mućka, “The lattice of quasivarietes of modules over a Dedekind ring”, Algebra Discrete Math., 27:1 (2019), 37–49
Citation in format AMSBIB
\Bibitem{JedMatMuc19}
\by Přemysl~Jedli{\v{c}}ka, Katarzyna Matczak, Anna Mu\'cka
\paper The lattice of quasivarietes of modules over a~Dedekind ring
\jour Algebra Discrete Math.
\yr 2019
\vol 27
\issue 1
\pages 37--49
\mathnet{http://mi.mathnet.ru/adm690}
Linking options:
  • https://www.mathnet.ru/eng/adm690
  • https://www.mathnet.ru/eng/adm/v27/i1/p37
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024