Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2019, Volume 27, Issue 1, Pages 50–57 (Mi adm691)  

RESEARCH ARTICLE

On the number of topologies on a finite set

M. Yasir Kizmaz

Department of Mathematics, Middle East Technical University, Ankara 06531, Turkey
References:
Abstract: We denote the number of distinct topologies which can be defined on a set $X$ with $n$ elements by $T(n)$. Similarly, $T_0(n)$ denotes the number of distinct $T_0$ topologies on the set $X$. In the present paper, we prove that for any prime $p$, $T(p^k)\equiv k+1 \pmod p$, and that for each natural number $n$ there exists a unique $k$ such that $T(p+n)\equiv k \pmod p$. We calculate $k$ for $n=0,1,2,3,4$. We give an alternative proof for a result of Z. I. Borevich to the effect that $T_0(p+n)\equiv T_0(n+1) \pmod p$.
Keywords: topology, finite sets, $T_0$ topology.
Received: 31.03.2017
Revised: 06.10.2017
Document Type: Article
MSC: Primary 11B50; Secondary 11B05
Language: English
Citation: M. Yasir Kizmaz, “On the number of topologies on a finite set”, Algebra Discrete Math., 27:1 (2019), 50–57
Citation in format AMSBIB
\Bibitem{Kiz19}
\by M.~Yasir~Kizmaz
\paper On the number of topologies on a finite set
\jour Algebra Discrete Math.
\yr 2019
\vol 27
\issue 1
\pages 50--57
\mathnet{http://mi.mathnet.ru/adm691}
Linking options:
  • https://www.mathnet.ru/eng/adm691
  • https://www.mathnet.ru/eng/adm/v27/i1/p50
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:115
    Full-text PDF :70
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024