Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2018, Volume 26, Issue 1, Pages 47–64 (Mi adm669)  

This article is cited in 1 scientific paper (total in 1 paper)

RESEARCH ARTICLE

Module decompositions via Rickart modules

A. Harmancia, B. Ungorb

a Department of Mathematics, Hacettepe University, Turkey
b Department of Mathematics, Ankara University, Turkey
Full-text PDF (389 kB) Citations (1)
References:
Abstract: This work is devoted to the investigation of module decompositions which arise from Rickart modules, socle and radical of modules. In this regard, the structure and several illustrative examples of inverse split modules relative to the socle and radical are given. It is shown that a module $M$ has decompositions $M=\operatorname{Soc}(M) \oplus N$ and $M=\operatorname{Rad}(M) \oplus K$ where $N$ and $K$ are Rickart if and only if $M$ is $\operatorname{Soc}(M)$-inverse split and $\operatorname{Rad}(M)$-inverse split, respectively. Right $\operatorname{Soc}(\,\cdot\,)$-inverse split left perfect rings and semiprimitive right hereditary rings are determined exactly. Also, some characterizations for a ring $R$ which has a decomposition $R=\operatorname{Soc}(R_R)\oplus I$ with $I$ a hereditary Rickart module are obtained.
Keywords: $\operatorname{Soc}(\,\cdot\,)$-inverse split module, $\operatorname{Rad}(\,\cdot\,)$-inverse split module, Rickart module.
Received: 22.10.2016
Revised: 15.12.2017
Document Type: Article
MSC: 16D10, 16D40, 16D80
Language: English
Citation: A. Harmanci, B. Ungor, “Module decompositions via Rickart modules”, Algebra Discrete Math., 26:1 (2018), 47–64
Citation in format AMSBIB
\Bibitem{HarUng18}
\by A.~Harmanci, B.~Ungor
\paper Module decompositions via Rickart modules
\jour Algebra Discrete Math.
\yr 2018
\vol 26
\issue 1
\pages 47--64
\mathnet{http://mi.mathnet.ru/adm669}
Linking options:
  • https://www.mathnet.ru/eng/adm669
  • https://www.mathnet.ru/eng/adm/v26/i1/p47
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:134
    Full-text PDF :49
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024