Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2018, Volume 26, Issue 1, Pages 34–46 (Mi adm668)  

This article is cited in 2 scientific papers (total in 2 papers)

RESEARCH ARTICLE

Cancellable elements of the lattice of semigroup varieties

Sergey V. Gusev, Dmitry V. Skokov, Boris M. Vernikov

Institute of Natural Sciences and Mathematics, Ural Federal University, Lenina 51, 620000 Ekaterinburg, Russia
Full-text PDF (351 kB) Citations (2)
References:
Abstract: We completely determine all commutative semigroup varieties that are cancellable elements of the lattice SEM of all semigroup varieties. In particular, we verify that a commutative semigroup variety is a cancellable element of the lattice SEM if and only if it is a modular element of this lattice.
Keywords: semigroup, variety, cancellable element of a lattice, modular element of a lattice.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00551
Ministry of Science and Higher Education of the Russian Federation 1.6018.2017
The work is partially supported by Russian Foundation for Basic Research (grant 17-01-00551) and by the Ministry of Education and Science of the Russian Federation (project 1.6018.2017).
Received: 30.03.2017
Document Type: Article
MSC: Primary 20M07; Secondary 08B15
Language: English
Citation: Sergey V. Gusev, Dmitry V. Skokov, Boris M. Vernikov, “Cancellable elements of the lattice of semigroup varieties”, Algebra Discrete Math., 26:1 (2018), 34–46
Citation in format AMSBIB
\Bibitem{GusSkoVer18}
\by Sergey~V.~Gusev, Dmitry~V.~Skokov, Boris~M.~Vernikov
\paper Cancellable elements of the lattice of~semigroup~varieties
\jour Algebra Discrete Math.
\yr 2018
\vol 26
\issue 1
\pages 34--46
\mathnet{http://mi.mathnet.ru/adm668}
Linking options:
  • https://www.mathnet.ru/eng/adm668
  • https://www.mathnet.ru/eng/adm/v26/i1/p34
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:171
    Full-text PDF :84
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024