Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2016, Volume 22, Issue 1, Pages 102–115 (Mi adm577)  

This article is cited in 2 scientific papers (total in 2 papers)

RESEARCH ARTICLE

Transformations of $(0,1]$ preserving tails of $\Delta^{\mu}$-representation of numbers

Tetiana M. Isaieva, Mykola V. Pratsiovytyi

Institute of Physics and Mathematics, National Pedagogical Mykhailo Drahomanov University, 9 Pyrohova St., Kyiv, 01601, Ukraine
Full-text PDF (353 kB) Citations (2)
References:
Abstract: Let $\mu\in (0,1)$ be a given parameter, $\nu\equiv 1-\mu$. We consider $\Delta^{\mu}$-representation of numbers $x=\Delta^{\mu}_{a_1a_2\ldots a_n\ldots}$ belonging to $(0,1]$ based on their expansion in alternating series or finite sum in the form:
$$ x=\sum_n(B_{n}-{B'_n})\equiv \Delta^{\mu}_{a_1a_2\ldots a_n\ldots}, $$
where $B_n=\nu^{a_1+a_3+\ldots+a_{2n-1}-1}{\mu}^{a_2+a_4+\ldots+a_{2n-2}}$, ${B^{\prime}_n}=\nu^{a_1+a_3+\ldots+a_{2n-1}-1}{\mu}^{a_2+a_4+\ldots+a_{2n}}$, $a_i\!\in\! \mathbb{N}$. This representation has an infinite alphabet $\{1,2,\ldots\}$, zero redundancy and $N$-self-similar geometry.
In the paper, classes of continuous strictly increasing functions preserving “tails” of $\Delta^{\mu}$-representation of numbers are constructed. Using these functions we construct also continuous transformations of $(0,1]$. We prove that the set of all such transformations is infinite and forms non-commutative group together with an composition operation.
Keywords: $\Delta^{\mu}$-representation, cylinder, tail set, function preserving “tails” of $\Delta^{\mu}$-representation of numbers, continuous transformation of $(0,1]$ preserving “tails” of $\Delta^{\mu}$-representation of numbers, group of transformations.
Received: 10.04.2016
Revised: 10.08.2016
Bibliographic databases:
Document Type: Article
MSC: 11H71, 26A46, 93B17
Language: English
Citation: Tetiana M. Isaieva, Mykola V. Pratsiovytyi, “Transformations of $(0,1]$ preserving tails of $\Delta^{\mu}$-representation of numbers”, Algebra Discrete Math., 22:1 (2016), 102–115
Citation in format AMSBIB
\Bibitem{IsaPra16}
\by Tetiana~M.~Isaieva, Mykola~V.~Pratsiovytyi
\paper Transformations of $(0,1]$ preserving tails of~$\Delta^{\mu}$-representation of numbers
\jour Algebra Discrete Math.
\yr 2016
\vol 22
\issue 1
\pages 102--115
\mathnet{http://mi.mathnet.ru/adm577}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3573547}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000392708800007}
Linking options:
  • https://www.mathnet.ru/eng/adm577
  • https://www.mathnet.ru/eng/adm/v22/i1/p102
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024