Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2016, Volume 22, Issue 1, Pages 116–128 (Mi adm578)  

This article is cited in 1 scientific paper (total in 1 paper)

RESEARCH ARTICLE

On nilpotent Lie algebras of derivations of fraction fields

A. P. Petravchuk

Department of Algebra and Mathematical Logic, Faculty of Mechanics and Mathematics, Kyiv Taras Shevchenko University, 64, Volodymyrska street, 01033 Kyiv, Ukraine
Full-text PDF (350 kB) Citations (1)
References:
Abstract: Let $\mathbb K$ be an arbitrary field of characteristic zero and $A$ an integral $\mathbb K$-domain. Denote by $R$ the fraction field of $A$ and by $W(A)=R\operatorname{Der}_{\mathbb K}A$, the Lie algebra of $\mathbb K$-derivations on $R$ obtained from $\operatorname{Der}_{\mathbb K}A$ via multiplication by elements of $R$. If $L\subseteq W(A)$ is a subalgebra of $W(A)$ denote by $\operatorname{rk}_{R}L$ the dimension of the vector space $RL$ over the field $R$ and by $F=R^{L}$ the field of constants of $L$ in $R$. Let $L$ be a nilpotent subalgebra $L\subseteq W(A)$ with $\operatorname{rk}_{R}L\leq 3$. It is proven that the Lie algebra $FL$ (as a Lie algebra over the field $F$) is isomorphic to a finite dimensional subalgebra of the triangular Lie subalgebra $u_{3}(F)$ of the Lie algebra $\operatorname{Der} F[x_{1}, x_{2}, x_{3}]$, where $u_{3}(F)=\{f(x_{2}, x_{3})\frac{\partial}{\partial x_{1}}+g(x_{3})\frac{\partial}{\partial x_{2}}+c\frac{\partial}{\partial x_{3}}\}$ with $f\in F[x_{2}, x_{3}]$, $g\in F[x_3]$, $c\in F$.
Keywords: Lie algebra, vector field, nilpotent algebra, derivation.
Received: 10.08.2016
Revised: 26.08.2016
Bibliographic databases:
Document Type: Article
MSC: Primary 17B66; Secondary 17B05, 13N15
Language: English
Citation: A. P. Petravchuk, “On nilpotent Lie algebras of derivations of fraction fields”, Algebra Discrete Math., 22:1 (2016), 116–128
Citation in format AMSBIB
\Bibitem{Pet16}
\by A.~P.~Petravchuk
\paper On nilpotent Lie algebras of derivations of fraction fields
\jour Algebra Discrete Math.
\yr 2016
\vol 22
\issue 1
\pages 116--128
\mathnet{http://mi.mathnet.ru/adm578}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3573548}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000392708800008}
Linking options:
  • https://www.mathnet.ru/eng/adm578
  • https://www.mathnet.ru/eng/adm/v22/i1/p116
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:197
    Full-text PDF :86
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024