Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2005, Issue 1, Pages 47–61 (Mi adm288)  

RESEARCH ARTICLE

Miniversal deformations of chains of linear mappings

T. N. Gaiduka, V. V. Sergeichuka, N. A. Zharkob

a Institute of Mathematics, Tereshchenkivska 3, Kiev, Ukraine
b Mech.-Math. Faculty, Kiev National University, Vladimirskaya 64, Kiev, Ukraine
Abstract: V. I. Arnold [Russian Math. Surveys, 26 (no. 2), 1971, pp. 29–43] gave a miniversal deformation of matrices of linear operators; that is, a simple canonical form, to which not only a given square matrix $A$, but also the family of all matrices close to $A$, can be reduced by similarity transformations smoothly depending on the entries of matrices. We study miniversal deformations of quiver representations and obtain a miniversal deformation of matrices of chains of linear mappings
$$ V_1\,\frac{\qquad}{\qquad}\,V_2\,\frac{\qquad}{\qquad}\,\cdots\,\frac{\qquad}{\qquad}\,V_t\,, $$
where all $V_i$ are complex or real vector spaces and each line denotes $\longrightarrow$ or $\longleftarrow$.
Keywords: Parametric matrices; Quivers; Miniversal deformations.
Received: 31.01.2005
Revised: 24.03.2005
Bibliographic databases:
Document Type: Article
MSC: 15A21, 16G20
Language: English
Citation: T. N. Gaiduk, V. V. Sergeichuk, N. A. Zharko, “Miniversal deformations of chains of linear mappings”, Algebra Discrete Math., 2005, no. 1, 47–61
Citation in format AMSBIB
\Bibitem{GaiSerZha05}
\by T.~N.~Gaiduk, V.~V.~Sergeichuk, N.~A.~Zharko
\paper Miniversal deformations of chains of linear mappings
\jour Algebra Discrete Math.
\yr 2005
\issue 1
\pages 47--61
\mathnet{http://mi.mathnet.ru/adm288}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2148819}
\zmath{https://zbmath.org/?q=an:1091.15012}
Linking options:
  • https://www.mathnet.ru/eng/adm288
  • https://www.mathnet.ru/eng/adm/y2005/i1/p47
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025