Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2005, Issue 1, Pages 62–68 (Mi adm289)  

RESEARCH ARTICLE

A decomposition theorem for semiprime rings

Marina Khibina

In-t of Engineering Thermophysics, NAS, Ukraine
Abstract: A ring $A$ is called an $FDI$-ring if there exists a decomposition of the identity of $A$ in a sum of finite number of pairwise orthogonal primitive idempotents. We call a primitive idempotent $e$ artinian if the ring $eAe$ is Artinian. We prove that every semiprime $FDI$-ring is a direct product of a semisimple Artinian ring and a semiprime $FDI$-ring whose identity decomposition doesn't contain artinian idempotents.
Keywords: minor of a ring, local idempotent, semiprime ring, Peirce decomposition.
Received: 27.09.2004
Revised: 21.03.2005
Bibliographic databases:
Document Type: Article
MSC: 16P40, 16G10
Language: English
Citation: Marina Khibina, “A decomposition theorem for semiprime rings”, Algebra Discrete Math., 2005, no. 1, 62–68
Citation in format AMSBIB
\Bibitem{Khi05}
\by Marina~Khibina
\paper A decomposition theorem for semiprime rings
\jour Algebra Discrete Math.
\yr 2005
\issue 1
\pages 62--68
\mathnet{http://mi.mathnet.ru/adm289}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2148820}
\zmath{https://zbmath.org/?q=an:1091.16015}
Linking options:
  • https://www.mathnet.ru/eng/adm289
  • https://www.mathnet.ru/eng/adm/y2005/i1/p62
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:131
    Full-text PDF :94
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024